

Toral Pb, Zn & Ag Project, Spain

Significant Indicated and Inferred JORC (2012) resource, Spain Metallurgy and XRT ore sorting proving up high grade concentrates Scoping Study and PEA complete – PFS underway

Cautionary Statement/Disclaimer

This presentation has been prepared by Europa Metals Limited ('EUZ', 'Europa', 'EM' or 'the Company', AIM and Altx: EUZ). It should not be considered as an offer or invitation to subscribe for or purchase any securities in the Company, or as an inducement to make an offer or invitation with respect to those securities. No agreement to subscribe for securities in the Company will be entered into on the basis of this document. This presentation may contain forecasts and forwardlooking information. Such forecasts, projections and information are not a guarantee of future performance, and involve unknown risks and uncertainties. Actual results and developments will almost certainly differ materially from those expressed or implied. A number of risks, both specific to EM and of a general nature, may affect the future operating and financial performance of EM and the value of any investment in it, including, but not limited to, economic conditions, stock market fluctuations, demand for lead and zinc and price movements for the same, timing of access to infrastructure, timing of environmental approvals, regulatory risks, operational risks, reliance on key personnel, reserve and resource estimations, legislation in Spain, Australia and other jurisdictions, foreign currency fluctuations, and mining development, construction and commissioning risk. You should not act or refrain from acting in reliance on this presentation material. This overview of EM and its Toral Project does not purport to be all-inclusive or to contain all the information that its recipients may require in order to make an informed assessment of EM's prospects. You should conduct your own investigation and perform your own analysis in order to satisfy yourself as to the accuracy and completeness of the information, statements and opinions contained in this presentation before making any decision with respect to EM.

The Studies and data referred to in this document is a technical and economic investigation of the viability of the Toral Project. The historic Scoping Study is based on low-level accuracy technical and economic assessments (± 30% accuracy) and is insufficient to support estimation of Ore Reserves to provide assurance of an economic development case at this stage or to provide certainty that the conclusions of the Study will be realised. The Scoping Study is based on the material assumptions detailed in the Study and have been carefully vetted and signed off by an independent expert on behalf of Bara Consulting. The Production Target and forecast financial information referred to in this technical document is based on JORC (2012) Inferred Mineral Resources. There is a low level of geological confidence associated with Inferred Mineral Resources and there is no certainty that further exploration work will result in the determination of Indicated Mineral Resources or that the Production Target itself will be realised. Further evaluation work in the form of a Feasibility Study is ongoing. To achieve the outcomes specified in this Study initial funding. (Input costs sourced from similar operations and recognised and accepted mine cost databases, considered accurate to +/-30%.) is likely to be required. Investors should note that there is no certainty that Europa will be able to raise funding when needed. It is also possible funding may only be available on terms that may be dilutive to or otherwise effect the value of Europa's shares.

This presentation complies with English and South African laws and the listing rules of AIM and JSE respectively and is made under those laws and rules. The Scoping Study details the assumptions in announcing forecast financial information for the Toral Project and the Company believes that there is a reasonable basis (as that term is defined in under English and South African law) in announcing forecast financial information. Investors are urged to read the Scoping Study in full and to seek independent advice where appropriate.

To the fullest extent possible Europa and its Directors expressly disclaim any liability arising under any law outside England and South Africa. Specifically persons resident in Australia should note that ASIC and ASX have issued guidance to the effect that inferred resources (upon which the Scoping Study is based) do not provide a reasonable basis for production targets and forecast financial statements and that Australian law does not consider there to be a reasonable basis for announcing forecast financial information for the Toral Project. By accessing this announcement and the Scoping Study persons acknowledge that they will not rely upon this announcement or the Scoping Study in making any investment decision. This presentation has been prepared by Europa Metals Limited ('EUZ', 'Europa', 'EM' or 'the Company', AIM and Altx Code: EUZ). It should not be considered as an offer or invitation to subscribe for or purchase any securities in the Company, or as an inducement to make an offer or invitation with respect to those securities. No agreement to subscribe for securities in the Company will be entered into on the basis of this document.

Competent person's statement

The updated Toral resource estimate was prepared by Mr J.N. Hogg, MSc. MAIG Principal Geologist for AMS, an independent Competent Person within the meaning of the JORC (2012) code and a Competent Person under the AIM guidance note for mining and oil & gas companies. The updated resource estimate was completed by Mr R. J. Siddle, MSc, MAIG Senior Resource Geologist for AMS and Competent Person. Mr Hogg has reviewed and verified the technical information that forms the basis of, and has been used in the preparation of, the updated Mineral Resource Estimate and this presentation, including all analytical data, diamond drill hole logs, QA/QC data, density measurements, and sampling, diamond and RC drilling and analytical techniques. Mr Hogg consents to the inclusion in this announcement of the matters based on the information, in the form and context in which it appears. Mr Hogg has also reviewed and approved the technical information in his capacity as a Qualified Person under the AIM Rules for Companies. The Scoping Study and JORC (2012) resource estimate for Toral therein was prepared by Mr J.N. Hogg, MSc. MAIG Principal Geologist for Addison Mining Services Limited ("AMS"), Mr J. Bennett BSc (Hons). ARSM, FIMMM CEng Associate Principal Mining Engineer for AMS, Dr N. Holloway, CEng, FIMMM Associate Processing Engineer for AMS, and Dr S. Struthers CEnv, FIMMM, Associate Environmental Consultant for AMS together being independent Competent Persons within the meaning of the JORC (2012) code and qualified persons under the AIM Note for Mining and Oil & Gas Companies. The Scoping Study was aided by Mr R. J. Siddle, MSc, MAIG Senior Resource Geologist for AMS, under the guidance of the competent persons, Mr Hogg, Mr Bennett. Mr Holloway and Ms Struthers have reviewed and verified the technical information that forms the basis of, and has been used in the preparation of, the Scoping Study and this announcement, including all analytical data, assumed and acquired technical and economic inputs, diamond drill hole logs, QA/QC data, density measurements, and sampling, diamond drilling and analytical techniques, and consent to the inclusion in this announcement of the matters based on the information, in the form and context in which it appears. Mr Hogg, Mr Bennett, Mr Holloway and Ms Struthers have also reviewed and approved the technical information in their capacities as qualified persons under the AIM Rules for Companies.

Company Overview

Board and Management

Major Shareholders

Registered Shareholder	No. of Shares	% of issued share capital
Jim Nominees Limited	7,553,128	17.29
Lynchwood Nominees Limited	5,826,161	13.34
Hargreaves Lansdown (Nominees) Limited	3,372,024	7.72
Hargreaves Lansdown (Nominees) Limited	3,275,502	7.50
Barclays Direct Investing Nominees Limited	2,637,320	6.04
HSDL Nominees Limited	1,891,275	4.33
Hargreaves Lansdown (Nominees) Limited	1,708,265	3.91
Spreadex Limited	1,668,139	3.82
Interactive Investor Services Nominees Limited	1,584,254	3.63
Interactive Investor Services Nominees Limited	1,273,871	2.92

Capital Structure (28 November 2020)

Issue	Capital Structure
Shares on Issue	49.1m
Warrants/ Options on Issue	6.09m @ 12.50p 0.94m @ 12.75p 4.0m @ 18.75p 0.47m @ 37.50p
Price	14p
Market Cap	£6.9m
Cash	£2m raised August 2020
EV	£4.9m

^{*} Operated by board of directors with majority free float in UK public markets. UK AIM market now primary listing. Subject to Australian companies act and UK/Altx market regulation

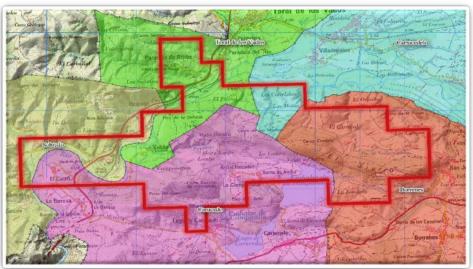
Company Overview

Board and Management

Major Shareholders

Registered Shareholder	No. of Shares	% of issued share capital
Jim Nominees Limited	7,553,128	15.37%
Lynchwood Nominees Limited	5,826,161	11.86%
Hargreaves Lansdown (Nominees) Limited	3,372,024	6.86%
Hargreaves Lansdown (Nominees) Limited	3,275,502	6.67%
Barclays Direct Investing Nominees Limited	2,637,320	5.37%
HSDL Nominees Limited	1,891,275	3.85%
Hargreaves Lansdown (Nominees) Limited	1,708,265	3.48%
Spreadex Limited	1,668,139	3.40%
Interactive Investor Services Nominees Limited	1,584,254	3.22%
Interactive Investor Services Nominees Limited	1,273,871	2.59%

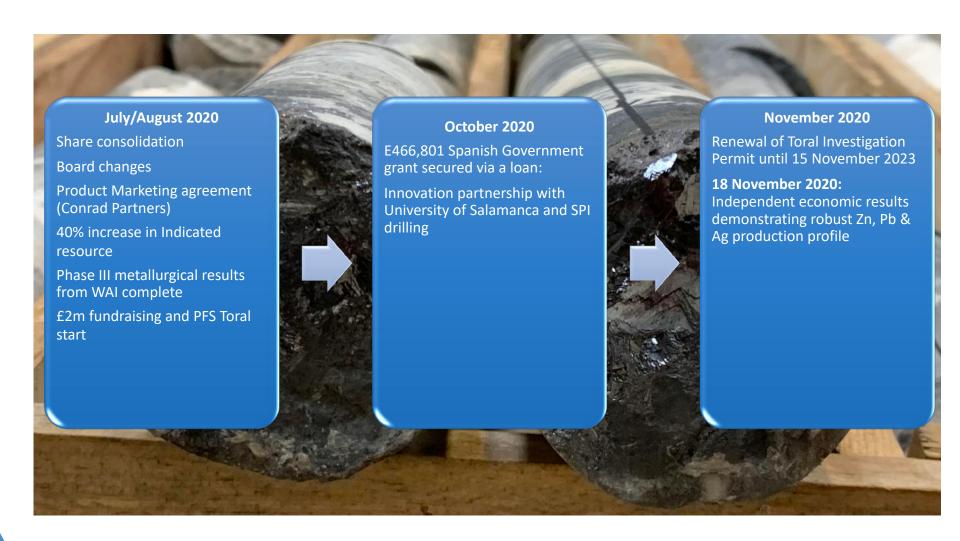
Capital Structure (23 Nov 2020)


Issue	Capital Structure
Shares on Issue	49.1m
Warrants/ Options on Issue	6.09m @ 12.50p 0.94m @ 12.75p 4.0m @ 18.75p 0.47m @ 37.50p
Price	11.50p
Market Cap	£5.7m
Cash	£2m raised August 2020
EV	£3.7m

^{*} Operated by board of directors with majority free float in UK public markets. UK AIM market now primary listing. Subject to Australian companies act and UK/Altx market regulation

Toral Lead, Zinc and Silver Project (Spain)

Toral – Spain, A European Metals Base



Immediate Toral Area

Recent News

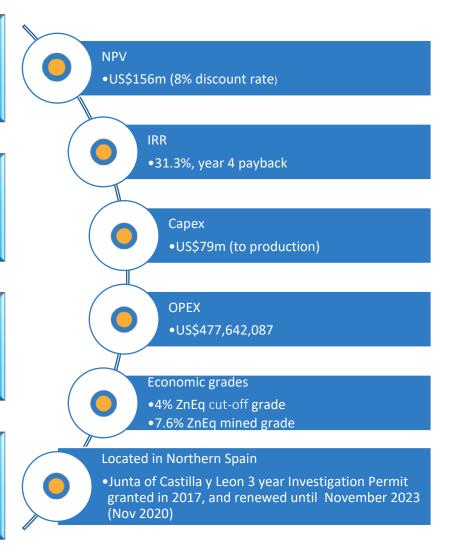
Toral Pb, Zn & Ag Project, Spain

Indicated resource category**

- •3.8 Mt @ 8.1% Zn Equivalent (including Pb credits) and 30 g/t Ag approximate indicated resource
- •Approx. 180,000 . contained tonnes Zinc, 150,000 . contained tonnes Lead & 3.7 million ounces of Silver

Total resource (JORC)**

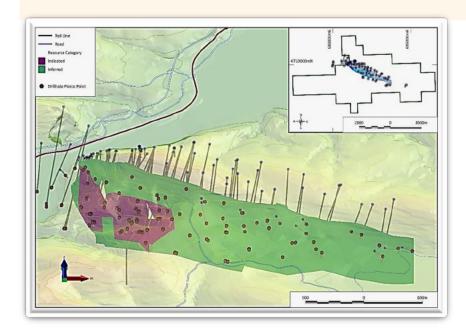
17Mt @ 6.7% ZnEq (including Pb credits) resource (JORC 2012) Including 720,000 tonnes of Zinc, 510,000 tonnes of Lead and 14 million ounces of Silver

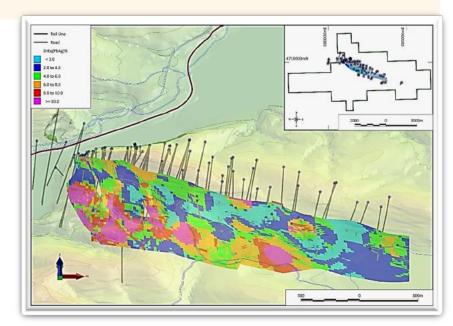

Technical

- •Initial hydrogeological report successful
- Advancing geotechnical approach

Metallurgy/Economic recovery

- •87% Pb recovery to a >60% Pb concentrate
- •85% Ag recovery to >600ppm Ag within Pb concentrate; and
- •86% Zn recovery to a >50.0% Zn concentrate.


*resources are reported in accordance with JORC (2012) @ 4% ZnEq (Pb) cut-off)



Toral – Block Model

The updated mineral resource estimate as of August 2020 for the Toral lead-zinc-silver deposit comprises:

- High grade core identified in initial work, area has been focus of recent campaigns and successfully upgraded from inferred to indicated.
- Purple Indicated Resources of approximately 3.8Mt@8.1% Zn Equivalent (including Pb credits),
 4.7% Zn, 3.9% Pb and 30 g/t Ag
- Green Inferred Resources of approximately 13Mt@6.4% Zn Equivalent (including Pb credits),
 4% Zn, 2.7% Pb and 23 g/t Ag

Toral – Resource Estimate JORC (2012 Edition)

Table 1: Summary of Indicated and Inferred mineral resources, reported at a 4.0% Zn equivalent cut-off grade (Zn Price:US\$2,680/t,US\$c/lb1.215, Pb Price Used:US\$2,100/t, US\$c/lb0.952. Ag Price Used:US\$16.2/oz. Figures are rounded to reflect the accuracy of the estimate and as such totals may not calculate exactly.

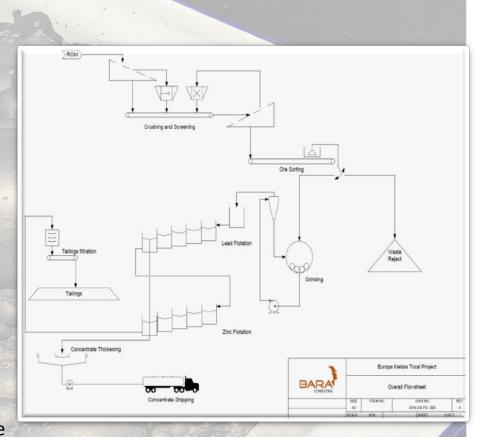
Cut-Off Zn Eq (PbAg)%	Tonnes (Millions)	Density	ity Zn_Eq Zn E (Pb)% (PbAg		Zn %	Pb %	Ag g/t	Contained Zn Tonnes (000s)	Contained Pb Tonnes (000s)	Ag Troy Oz (Millions)					
	Indicated														
6															
5	3.3	2.9	8.7	9.4	5	4.2	32	170	140	3.4					
4	3.8	2.9	8.1	8.8	4.7	3.9	30	180	150	3.7					
3	4.1	2.9	7.7	8.4	4.4	3.8	29	180	150	3.8					
	Inferred														
6	8	2.9	7.6	8.3	4.7	3.4	29	360	260	7.2					
5	10	2.9	7	7.6	4.4	3	26	450	310	8.6					
4	13	2.9	6.4	6.9	4	2.7	23	540	360	10					
3	17	2.9	5.8	6.2	3.7	2.4	20	610	400	11					
					Total										
6	11	2.9	8.1	8.8	4.9	3.7	30	510	390	10					
5	14	2.9	7.4	8	4.5	3.3	27	620	450	12					
4	17	2.9	6.7	7.3	4.2	3	24	720	510	14					
3	21	2.9	6.2	6.7	3.8	2.7	22	790	550	15					
				Transit	ional Oxide	Material									
4	3	2.9	5.7	5.1	2.6	2.9	27	75	83	2.5					
				Unwe	eathered Fres	sh Rock									
4	14	2.9	7.6	7.1	4.5	3	24	640	430	11					

Toral – Metallurgy

Zinc Concentrate

86% Zn recovery to a 60.0% Zn concentrate

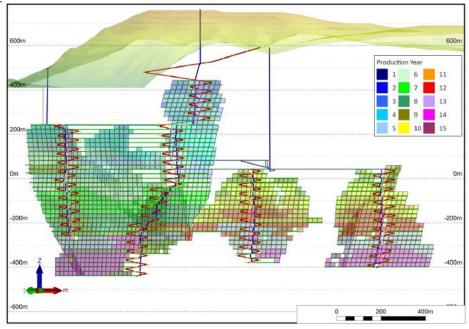
Lead/Silver Concentrate

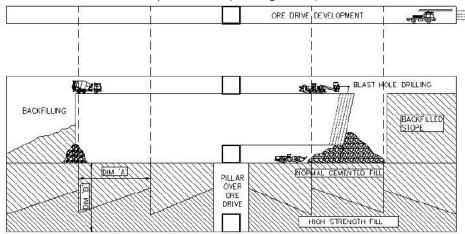

- 87% Pb recovery to a 79.2% Pb concentrate;
- 85% Ag recovery to 512ppm Ag within Pb concentrate

Bulk Concentrate

Analysis indicates that this ore type may be beneficiated through sorting plus flotation of the sorted products; and 73% Pb, 84% Zn and 81% Ag recoveries to 16.0% Pb, 18.6% Zn and 165 g/t Ag concentrate grade were achieved.

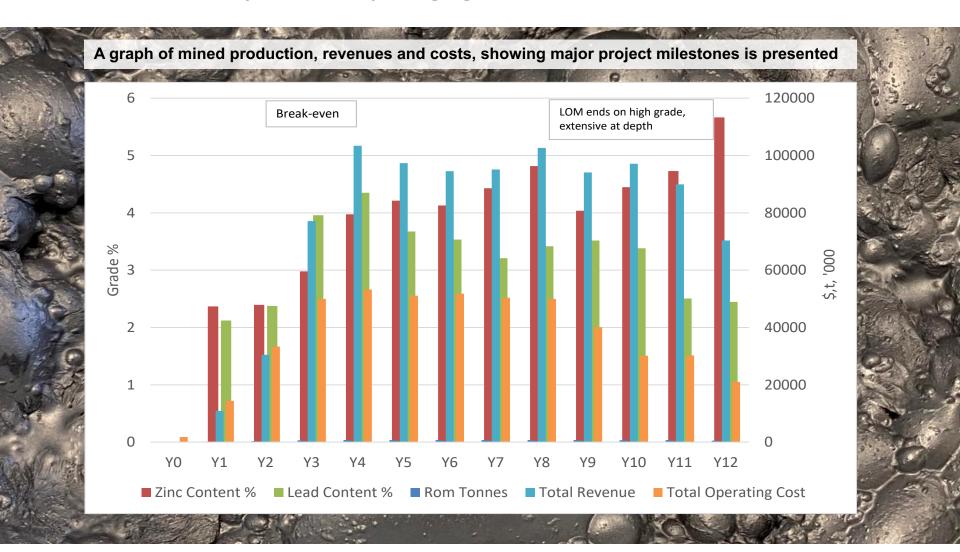
XRT Ore Sorting


- Ore sorting results for lower grade sample from TOD-024, an area previously not considered in the 2018 Scoping Study, utilising XRT achieved:
 - 98% Pb, 96% Zn and 87% Ag recoveries;
 - 45% 50% waste rejection; and2 times increase in head grade.



Toral – Preferred Mining Option

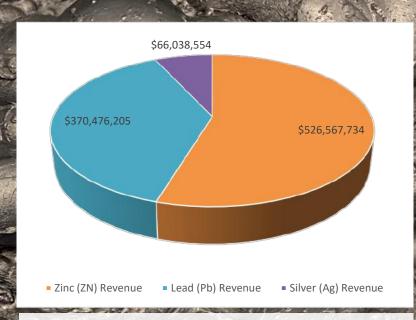
- Sub-Level Longhole Stoping (SLOS) Entry to mine via a principal decline reaching various levels
- Access to the mine will be by both ramp (labour, equipment, rock) and vertical shaft (rock hoisting only)
- During the initial years of the mine life, access will be by ramp developed conventionally from a boxcut on surface providing access for all labour, equipment and ore haulage from the upper levels to approximately 450mRL
- A four metre shaft for rock hoisting only, is then planned from a pilot raise-bore over 18 months from Year 4. Such a shaft will be equipped with a 700kW double drum hoist for rock hoisting in 2 compartments only
- Ramp development will then continue to 900m RL from Year 4 until the end of life of mine. 3.5m x 3.5m sublevel drifts will be developed laterally from the ramp at 20 metre intervals in order to access stopes for mining.



Toral Life of Mine Development Plan (looking North)

Typical sub-level set of 3 levels showing underhand development sequence, overhand stoping sequence and pillar layout

Summary Mining Schedule (Years)


Key observations:

- Payback in Year 4;
- •Year 12 ends in high grade zinc; and
- Resource expansion potential exists at depth and along strike to the east.

-			6. TES			- 4 7						and the	A CONTRACTOR OF THE PARTY OF TH		
		Totals	0	1	2	3	4	5	6	7	8	9	10	11	12
	Development tonnes ('000s)	747	-	9	37	119	84	99	79	145	118	57	-	-	-
	LHOS tonnes ('000's)	6,459	-	129	321	504	615	601	622	556	583	644	698	700	487
	Total Ore tonnes ('000's)	7,206	-	138	358	623	699	700	701	701	701	701	698	700	487
	Waste tonnes ('000's)	3,035	89	178	334	401	405	378	393	364	352	140	-	-	-
	RoM Content														
	Zn tonnes ('000's)	301	-	3.2	8.5	18.5	27.8	29.5	28.9	31.0	33.8	28.3	31.0	33.1	27.6
*	Pb tonnes ('000's)	241	-	2.9	8.5	24.6	30.4	25.7	24.8	22.5	24.0	24.7	23.6	17,6	11.9
46	Ag Oz ('000's)	6,152	-	80	267	648	719	583	554	594	618	641	621	492	335
	RoM Content														
1	Zn%	4.2	-	2.4	2.4	3.0	4.0	4.2	4.1	4.4	4.8	4.0	4.4	4.7	5.7
	Pb%	3.3	-	2.1	2.4	4.0	4.4	3.7	3.5	3.2	3.4	3.5	3.4	2.5	2.4
1	Ag g/t	26.6	_	18.1	23.3	32.4	32.0	25.9	24.6	26.4	27.4	28.5	27.7	21.8	21.4

Financial Metrics		
Total Revenue	\$ 962m	USD
Operating Cost	\$ 477m	USD
EBITDA	\$ 471m	USD
LOM Capex	\$ 130m	USD
Net Cashflow	\$ 340m	USD
Pre-Tax NPV (8%)	\$ 156m	USD
Pre-Tax IRR	31.3	%
Tax rate	0.0	%
Post-Tax NPV (8%)	\$ 156m	USD
Post-Tax IRR	31.3	%
Operating Margin	48.9	%
Payback year	4	Years
Upfront Capex (to production)	\$ 79m	USD

Total revenue is \$962m over the life of mine, with zinc the major revenue contributor at \$526m, followed by lead at \$370m and silver at \$66m. 3-year trailing average metal prices were used including \$2668/t for zinc, \$2099/t for lead and \$16.5/oz for silver. A graph of relative metal revenue contributions is shown in Figure 1

			2020	2018	and the second
311/	Resource	Indicated Tonnes	3.8m	-	
17		Inferred Tonnes	13m	16m	
		Total Tonnes	17m	16m	-
5 100	8) # 6	Av. ZnEq.%	7.3	7.5	5
		Av. Zn%	4.2	3.9	
		Av. Pb%	3	3.1	
Company of		Av. Ag g/t	24	24	E.
	Mining	Rate tpa	700,000	450,000	**
		Grade ZnEq%	7.6%	7.5%	8
		Method	SLOS	Cut&Fill	N.
		Approach	Contractor	Owner	
		Cost	US\$36/t	US\$36/t	45-
		LOM	12 years	15 years	
	Metallurgy	Process	Sorting+Flotation	Flotation	
1		Recovery (Average)	85% Zn, 87% Pb, 86% Ag	93% Zn, 89% Pb, 80%Ag	0
		Cost	US\$22/t	US\$25/t	2
	Сарех	Mine	US\$86m	US\$46m	2
		Plant	US\$30m	US\$33m	
		Infrastructure	US\$4m	US\$5m	
	ř.	Other	US\$11m	-	2
12 /2 kg		LOM Capex	US\$131m (Y1-12)	US\$159m (Y1-15)	
		Upfront (to production)	US\$79m	US\$94m	7
	Financials	NPV	US\$156m	US\$110m	
		IRR	31.3%	24.4%	
		Payback Year	4	6	13.8

Europa – Next 12 months

Current Technical work programme

- Additional resource drilling to:
 - Convert additional Inferred resources to the Indicated category;
- o Increase its knowledge base with respect to the potential lower-grade mineralisation zones to potentially bring them into the mining inventory through XRT ore-sorting; and
- o Geometallurgical drilling
- Further metallurgical testwork on the current ore types identified
- Geotechnical assessment across all aspects of the project:
 - o Rock mechanics
 - Waste management
 - o Plant location
- Hydrogeological testwork:
 - o Drilling of a further two holes for piezometers
 - o Pump testing
 - Water monitoring
- Environmental assessment:
 - Continuation of baseline studies
 - Increase data gathering
- Social/community aspects:
 - o Build on existing strong relationships with the local community

Peer Group Comparison

Company	Туре	Stage	Bourse	Mkt Cap US\$m	EV/resource US\$/t	Zn grade (%)	Pb grade (%)	Zn+Pb (%)	NPV US\$m	IRR (%)	Country	Capex	Cost/t US\$
Adriatic Metals	UG	BFS	ASX	3 12	514.8	3.5	2.2	5.7	916	107	Bos/Hert	178.4	56.67
Zinc of Ireland	UG	PEA	ASX	4	4.0	7.8	1.2	9.0	12	_	Irelan d		
Rathdow ney	UG	PEA	TSX-V	11	7.9	5.5	1.5	7.0	170	30	Polan d	233.8	62.9
Firew eed Zinc	OP/UG	PEA	TSX-V	39	11.8	6.0	0.0	0.0	345	24	Canada	303.8	145.9
Alta Zinc	UG	PFS	ASX	10	38.0	4.9	0.0	0.0		-	Italy		
Average				75	115.3	5.5	1.0	4.3	476.9	53.7			
Weighted Average					429.2	3.9	1.9	5.0	799.9	92.1			
Europa Metals	UG	PFS	AIM	5	3.5	4.1	3.0	7.1	156	31	Spain		

Marketing Communication Your Capital is at Risk

TP RESEARCH

18 November 2020

Summary

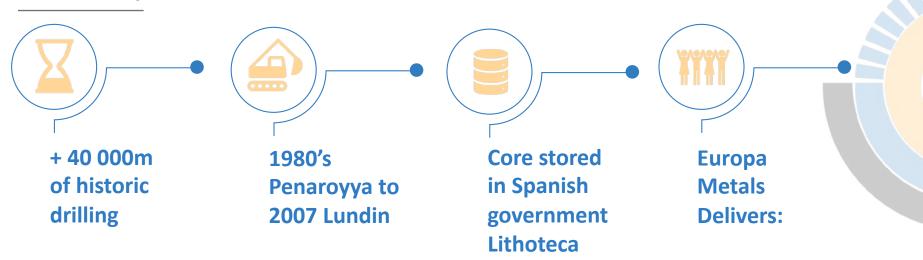
- Considerable exploration work completed demonstrating potential for progressing high-grade lead,
 zinc and silver project in Spain
- Significant indicated and inferred resource open at depth and along strike
- Metallurgical results very promising, with a high grade concentrate offering flexibility for processing and marketing
- XRT ore sorting work also indicates potential for maximizing the deposit potential
- Economic study update complete showing enhanced economics and mine plan 2020
- PFS Underway including further metallurgy and hydrogeology
- Concentrate marketing agreement signed with Conrad Partners (2020) following 2020 metallurgy programme
- Spain/EU location- Established infrastructure, full transparency as to any development and production.

EUROPA METALS

Lead, Zinc, Silver AIM, Altx: (EUZ)

12-month commodities performance

- 12 month performance across all three metals strong
- Silver continues to react to high gold prices and global conditions
- Zinc supply loses marginal producers, stockpiles low following five year deficit as Chinese steel underpins demand*
- Batteries underpinning Lead demand and more stable than, potentially, the lithium price**



^{*}Teck

^{**}S&P/Wood Mac

Toral – History

- Maiden resource published in 2017 in accordance with JORC (2012 Edition)
- Identified gaps in data and interpretation, undertook major re-logging exercise utilising existing core in the National Lithoteca in Cordoba.
- Scoping Study completed 2018
- High grade core recognised and targetted
- Multiple resource and metallurgical drilling campaigns completed 2017-20 (>5,000m)

- Metallurgical test programmes complete
- Geotechnical studies advanced
- Environmental baseline studies underway
- Update Resource 2020, global resource of 17mt@6.9% Zn equivalent*, including Indicated resource of 3.8mt@8.3% Zn equivalent*
- * see page 9 for resource detail

Further information

- Hydro geological work to PFS level
- Resource drilling to increase confidence levels and size of Measured and Indicated
- Environmental, waste management, metallurgy and geotechnical work
- G&A, working capital topco and Spain operations

De-risking project through PFS

Established team have completed significant amounts of exploration work since project acquisition with 2020 work including:

- JORC (2012) resources update with new Indicated resources/Phase III metallurgy underway by Wardell Armstrong international/ore sorting programme underway/ initial geotechnical work complete
- Culmination of above work establishes the preliminary economic parameters of a Pre-Feasibility Study (incorporating all work since 2018 Scoping Study)
- Concentrate Marketing agreement signed with Conrad Partners to move forward sales strategy

12-month target:

To complete key components of Pre-Feasibility Study ("PFS") work programme

Objectives:

 Increasing understanding of project for industry and strategic investment groups through: hydrogeological work, completion of further resource drilling, waste management

