

SAVANNAH RESOURCES PLC AIM: SAV RNS – 28 February 2017

avannah resources plc

Savannah Resources Plc / Index: AIM / Epic: SAV / Sector: Mining

a consortium agreement (the 'Consortium').

Savannah Resources Plc

PROJECT PORTFOLIO

Savannah Resources plc (AIM: SAV) ('Savannah' or 'the Company'), the AIM quoted resource development company, is pleased to confirm that is has identified significant zones of high grade total heavy mineral ('THM') mineralisation at the Ravene deposit in Mozambique. This follows the receipt of drill results from recent work undertaken by Savannah alongside the compilation and verification of legacy drill work undertaken by Rio Tinto (Figures 1). The Ravene deposit forms part of the Mutamba Mineral Sands Project, being explored by Savannah and Rio Tinto as part of

High Grade HMS Mineralisation Confirmed at Ravene, Mutamba Project,

Mozambique

HIGHLIGHTS:

- Compilation and verification of legacy Rio Tinto drilling was completed highlighting significant zones of high grade THM mineralisation
 - Significant Rio Tinto results at 5% THM cut off include:
 - **12m at 15.4% THM from surface** in hole 2762
 - o 18m at 9.1% THM from surface in hole 2807
 - o 21m at 7.9% THM from surface in hole 2812
 - 45m at 7.7% THM from surface in hole 2593
 - 27m at 6.4% THM from surface in hole 2757
- Infill drilling carried out by Savannah for 107 drill holes for a total of 2,914m has successfully confirmed the zones of high grade THM mineralisation
- Significant Savannah results at a 5% THM cut off include:
 - 12m at 10.5% THM from surface in hole 5000
 - o **12m at 8.7% THM from surface** in hole 4952
 - o 15m at 8.1% THM from surface in hole 4946
 - o 27m at 7.1% THM from surface in hole 4946
 - **36m at 6.5% THM from surface** in hole 4932
- Drilling confirmed the existence of two mineralised zones of heavy mineral concentrations >5% THM at Ravene, with the main zone having a length of 3.5km and widths up to 1.5km
- Results will be used to estimate an initial Inferred Mineral Resource over the Ravene deposit – the current work programme focused on the known high grade portions of the mineralisation and further drilling is required to define possible extensions of the mineralisation
- The resource estimation will be fast tracked and included into the Scoping Study, which is currently underway

MINERAL SANDS MOZAMBIQUE (CONSORTIUM AGREEMENT WITH RIO TINTO)

COPPER/GOLD OMAN

> LITHIUM *FINLAND*

Savannah's CEO, David Archer said: "The drilling results have underscored the Ravene deposit as a potential point of focus for evaluation as an initial mining area in the Scoping Study, which is currently underway. High THM grades have been identified from surface, which are very supportive of our development model for a high grade, low stripping ratio dry mining development. The Ravene deposit main zone shows very good continuity with thick sections of high grades in a 3.5km long zone and up to 1.5km wide. The programme was successfully planned and executed to more precisely define the high grade zones of THM at the Ravene deposit, which we believe could increase the current global Indicated and Inferred Mineral Resource inventory of 3.5 billion tonnes at 3.8% THM at the Mutamba Project North. In parallel, our Scoping Study to better determine the development potential of Mutamba continues to progress well."

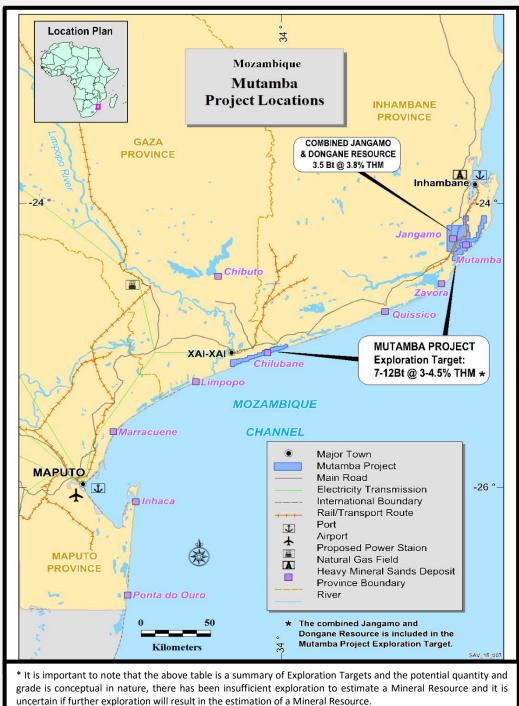


Figure 1. Mutamba Project Location Map

Introduction

The Mutamba Project is subject to a consortium agreement between Savannah and Rio Tinto and is operated by Savannah. The Mutamba Project includes the Mutamba Project North (consisting of Jangamo, Dongane and Ravene deposits) and the Chilubane deposit, which is located 180km to the southwest of the Mutamba Project North. The current resource statement of 3.5 billion tonnes at 3.8% THM includes only the Jangamo and Dongane deposits (Figure 1).

The Ravene deposit which is part of the Mutamba Project North is relatively under evaluated and the drilling results suggest that it has the potential to host significant zones of high grade heavy minerals. The aim of the drilling at Ravene was to infill the original grid on a 500m line spacing to provide drilling information at a concentration of 500m x 500m so that it can be used to calculate an inferred mineral resource and be incorporated into the Scoping Study which is currently underway.

Rio Tinto Drilling

Rio Tinto completed an initial drill programme at Ravene between 2002 and 2004, drilling a total of 119 holes RC for 5,039m on a 1km by 500m grid (Figure 2-3). These results have now been reviewed and verified by the recent Savannah drill programme. The top 10 significant results are summarised below in Table 1, with full results in Appendix 1-3.

The drilling confirmed three main zones of heavy mineral concentrations greater than 5% THM. The largest of these zones occurred in the northern block of the drill grid, occurring over a distance of 8km. The mineralisation is seen to occur in sequence of parabolic dunes made up of third generation of dunes striking on a north-south trend. The two other mineralised zones occur in the southern block of the Ravene deposit and are smaller, occurring over a distance of 4km for one and 1km for the other.

Rio Tinto		3% THM Cut off		5% THM Cut off	
Hole	From (m)	Width (m)	Avg THM %	Width (m)	Avg THM %
2591	0	33	6.0	30	6.3
2593	0	48	7.5	45	7.7
2702	0	45	5.6	42	5.8
2711	0	27	5.5	27	5.5
2757	0	39	5.5	27	6.4
2762	0	30	8.3	12	15.4
2780	0	63	5.4	63	5.4
2807	0	33	6.5	18	9.1
2811	0	24	5.9	18	6.6
2812	0	24	7.4	21	7.9

Table 1. Summary of Top 10 Results from Historical Rio Tinto Drilling

Savannah Drilling

Drilling at Ravene (Figure 2-3) was carried out over a 21km length, targeting specific zones of high grade mineralisation outlined by the Rio Tinto drilling. The programme commenced in December 2016 and was completed in January 2017, with 107 holes drilled for a total of 2,914m. The top 10 significant results are summarised below in Table 2, with full results in Appendix 1-3.

The results of the infill drilling carried out by Savannah confirmed the existence of the major zone of heavy mineral concentrations in northern Ravene block. The bulk of the high grade concentrations are found in the southern section of the main zone with a length of 3.5km and widths up to 1.5km. The mineralisation to the north of this zone is consistent at cut off grades of 3% and 4% THM. The mineralisation in southern Ravene is more discrete comprising three smaller zones up to 1.9km in length, which has a greater continuity at a 3% cut-off. A typical cross section of the mineralisation at Ravene can be found in **Figure 4**.

Further assessment of the mineralogy of the heavy minerals at Ravene will be conducted on material retrieved during the recent drilling programme. Previous studies, however, indicate the THM at Ravene contains approximately 54% ilmenite and 2.3% zircon.

Savan	nah Resource	3% THM Cut off		5% THM Cut off	
Hole	From (m)	Width (m)	THM %	Width (m)	THM %
4932	0	39	6.2	36	6.5
4944	0	36	5.0	21	6.3
4945	0	21	7.0	15	8.1
4946	0	27	7.1	27	7.1
4952	0	15	7.7	12	8.7
4954	0	42	5.9	33	6.3
4957	0	24	5.6	21	5.9
4979	0	36	6.4	33	6.7
4998	0	39	6.1	39	6.1
5000	0	27	6.7	12	10.5

Table 2. Summary of Top 10 Results from Recent Savannah Resources Drilling

Figure 2. Map of the Ravene prospect area with Savannah's completed drilling (blue) and existing Rio Tinto drilling (black) highlighting key results using a 3% THM cut off showing the consistent broad zone of mineralisation identified

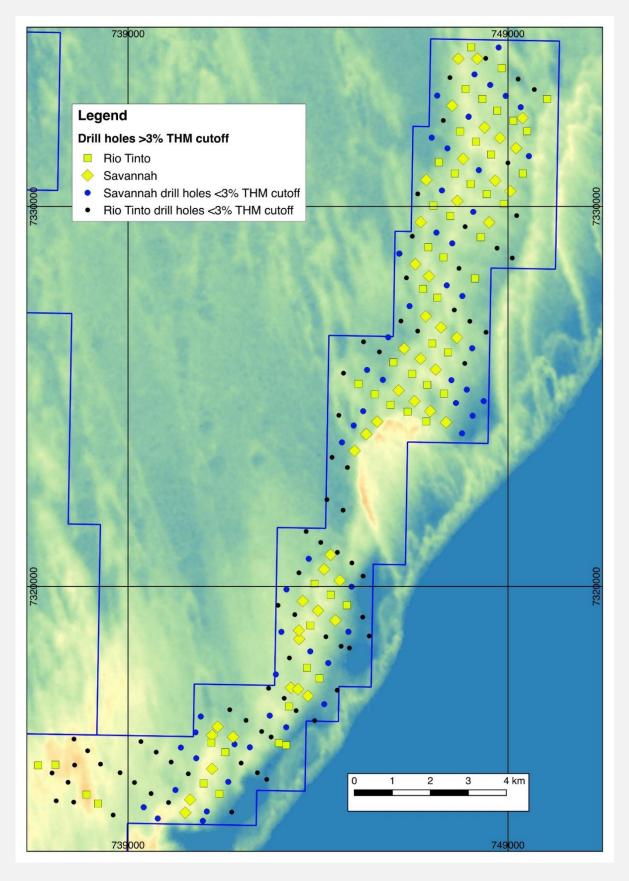
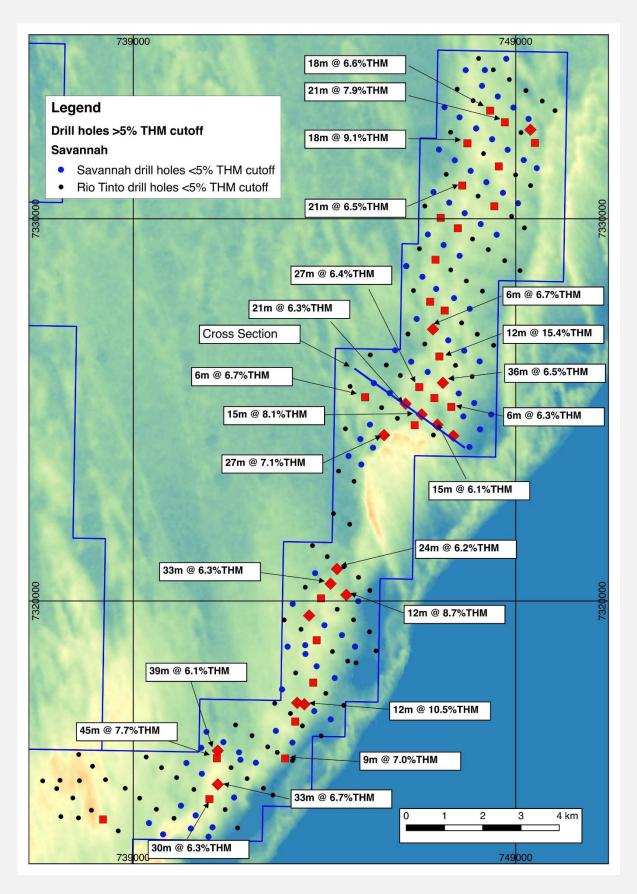



Figure 3. Map of the Ravene prospect area with Savannah's completed drilling (blue) and existing Rio Tinto drilling (black) highlighting key results using a 5% THM cut off

Ravene Cross Section 1.5 km 4945 4944 15m @ 21m @ 8.1% THM 7.0% THM 4940 36m @ 21m @ 5.0% THM 6.3% THM 4939 18m @ 15m @ 50 m 50m ASL 5.7% THM 5.1% THM 4942 33m @ 30m @ Dune 4943 4.9% THM 5.1% THM Unit 3 West East **Dune Unit 4** Om ASL Dune Unit 2

Figure 4. East to West Section - Ravene Deposit showing mineralisation and geology

Competent Person and Regulatory Information

The information in this document that relates to exploration results is based upon information compiled by Mr Dale Ferguson, Technical Director of Savannah Resources Limited. Mr Ferguson is a Member of the Australian Institute of Mining and Metallurgy (AusIMM) and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the December 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Ferguson consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

The information in this document that relates to the resource estimation is based upon information compiled by Mr Colin Rothnie, an independent consultant. Mr Rothnie is a Member of the Australian Institute of Mining and Metallurgy (AusIMM) and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the December 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Rothnie consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

This announcement contains inside information for the purposes of Article 7 of Regulation (EU) 596/2014.

ENDS

CONTACT US				
For further information please visit www.savannahresources.com or contact:				
David Archer	Savannah Resources plc	Tel: +44 20 7117 2489		
David Hignell / Gerry Beaney	Northland Capital Partners Ltd	Tel: +44 20 3861 6625		
(Nominated Adviser)				
Jon Belliss / Elliot Hance	Beaufort Securities Ltd	Tel: +44 20 7382 8300		
(Corporate Broker)				
Charlotte Page / Lottie Brocklehurst	St Brides Partners Ltd	Tel: +44 20 7236 1177		
(Financial PR)				

Notes

Savannah Resources Plc (AIM: SAV) is a growth oriented, multi-commodity, mineral development company.

<u>Mozambique</u>

Savannah operates the Mutamba heavy mineral sands project in Mozambique in collaboration with Rio Tinto, and can earn a 51% interest in the related Consortium, which has an established initial Indicated and Inferred Mineral Resource Estimate of 3.5 billion tonnes at 3.8% THM over the Jangamo and Dongane deposits. Under the terms of the Consortium Agreement with Rio Tinto, upon delivery by Savannah of the following Savannah will earn the corresponding interest in the Mutamba Project: Scoping Study - 20%; Pre-Feasibility Study - 35%; Feasibility Study – 51%. Additionally, the Consortium Agreement includes an offtake agreement on commercial terms for the sale of 100% of production to Rio Tinto (or an affiliate).

<u>Oman</u>

Savannah has interests in two copper blocks in the highly prospective Semail Ophiolite Belt in Oman. The projects, which have an Indicated and Inferred Mineral Resource of 1.7Mt @ 2.2% copper and high grade intercepts of up to 56.35m at 6.21% Cu, with gold credits, provide Savannah with an excellent opportunity to potentially evolve into a mid-tier copper and gold producer in a relatively short time frame. Together with its Omani partners, Savannah aims to outline further mineral resources to provide the critical mass for a central operating plant to develop the deposits and in December 2015 outlined exploration targets of between 10,700,000 and 29,250,000 tonnes grading between 1.4% and 2.4% copper.

<u>Finland</u>

Savannah has Reservation Permits over two new lithium projects, Somero and Erajarvi, covering an area of 159km² in Finland. Savannah holds a 100% interest in these projects through its Finnish subsidiary Finkallio Oy. Geological mapping by the Finnish Government within the project areas has highlighted the presence of lithium minerals spodumene, lepidolite and petalite with the Government also identifying Somero and Erajarvi as one of the most prospective areas to discover lithium deposits in Finland. Follow up work to further expand and define the pegmatites in readiness for drilling is being planned for the second quarter of 2017 (after winter).

APPENDIX 1 – JORC 2012 Table 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 Reverse circulation, air-core drill samples were taken at 3m intervals. All holes were drilled vertically with NQ sized drill rods. Large plastic bags were placed under a cyclone to capture a complete 3m run of sediment intersected by the drill. The bulk sample was then dried and split using a rotary splitter to get a sub sample of 500 to 700g for heavy mineral determination
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	 Air-Core Drilling. Drilling is conducted on a regular grid using air-core drilling technology, an industry standard drilling technique for HM deposits. Drilling rods are 3m long and 1 sample is taken for each rod interval. Collar surveys are carried using hand held GPS with an accuracy to within 5m, and the z direction was determined by satellite derived elevation data and is accurate to less than a metre. A bulk sample of a run from a 3m drill rod was dried and weighted to assess the expected recovery for each interval. Dried sample weights were plotted against an "expected" value and were used to monitor the recovery of each drilled interval.
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Heavy minerals occur disseminated within sedimentary units. At Ravene there are units deposited as aeolian dunes with vertical continuity. Mineralised zones extend for many hundreds of metres to kilometers along strike with minor local variability. Down hole sampling is carried out at 3m intervals coinciding with the length of a drill rod. The sample interval is considered standard for gaining an understanding of the vertical extent and continuity of mineralisation. Bulk samples at the rig were dried and split to 500g to 700g sub samples for heavy mineral and slimes analysis.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 NQ air-core drilling with hole diameter approximately 81mm, and a drill rod diameter of approximately 75mm, all holes are vertical. Air-core drilling is a form of reverse circulation drilling requiring annular drill rods. Compressed air is pumped down the outer tube and the sample is collected from the open face drilling bit and blown up the inner tube. It is well suited to drilling unconsolidated sediments and it is one of the few drilling techniques to give

Criteria	JORC Code explanation	Commentary
		good sample quality below the water table.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 Field assessment of sample volume. A theoretical dried sample mass was estimated to be within the range of 18 kg to 24 Kg, 70% of samples are within the expected range. Lower than average sample recovery is recorded only for the very top of the drill hole due to air and sample losses into the surrounding soil. At Ravene the water table was very rarely encountered. When the water table was encountered. In order to avoid sample contamination from upper intervals, cyclone and hoses were flushed before a new sample interval run in saturated soil conditions.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	 The entire drill sample is delivered to the laboratory for further analysis, thereby eliminating the possibility of sample bias caused by splitting the sample in the field. Sample bias and segregation are kept to a minimum with the whole sample interval collected in large plastic bags at the rig and transported to the laboratory, where they are placed into large metal trays and the whole sample air dried. The dried samples were broken up in the trays and returned to the sample bag for splitting. Low recoveries were observed in transitions between dune types. Higher slimes in underlying non-mineralised units were encountered which slowed the rigs usual advance rate. When this occurred water was injected into the airstream to stop clay particles from accreting to the inside of the inner tube and blocking it.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	• Materials sampled by the air-core drilling rig can be dry, moist or wet. Dry samples may lose some of their slimes fraction due to blowing out of the sampling equipment. The amount of dust coming out of the cyclone was monitored and kept to an absolute minimum. HM and oversize are not expected to be affected. Moist drill samples (the most commonly found at Ravene) are the most representative as the whole sample is returned as "clumps" of material from the bit face. There is no chance for HM or slimes to segregate in the moist samples, because all of the material stays stuck together. When dust levels were high water was generally injected into the airstream to maintain integrity of the sample fractions.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. 	• All drill holes were logged in the field at the time of sampling. Each 3m sample interval was carefully homogenised and assessed for lithology, colour, grain size, degree of roundness and sorting. Each interval was semi quantitatively assessed for slimes content and heavy mineral concentrations by washing and panning a standard representative subsample.

Criteria	JORC Code explanation	Commentary
	 Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	• Virtually all of the drill samples are sand with minor silt. Drillhole logs are useful in separating geology units and for checking the laboratory results, but do not provide any information additional to the laboratory data that is fundamentally required for the resource estimation.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	• The full sample of each 3m drill run was sampled in the field and after logging was labeled and sealed and taken to the laboratory for analysis. The complete sample was dried in large metal trays and once dry the sample is placed into a container to be broken up into individual particles for homogenization. The complete dry sample weight is recorded and then two sub samples of 500 to 700g are made using a rotary splitter one sample is for analysis and the other sample is for reference.
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	All drill samples consist of sand, or silty sand. For these samples the sample preparation method is appropriate.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	 All sample preparation and analysis stages are documented as a set of standard operating procedures. All stages of the analytical process are monitored by the laboratory supervisor to ensure all procedures are being adhered to. All weights are automatically captured by the use of an in-house laboratory information management system (LIMS) software, which minimizes any human data input and the risk of mistyping values into the database. In-house reference standards, blanks and duplicates are routinely inserted in the sample sequence at a rate of 1:20 to assess the quality of sampling and analysis. Drill holes were also twinned at a rate of 1:20 holes.
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	• The entire interval sampled is collected and delivered to the laboratory. Care is taken with the sample collection and handling to ensure that the sample delivered to the laboratory is representative of the interval drilled.
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The three-metre drill sample of nominal size is considered large enough to reliably capture the HM, slimes and oversize characteristics of the in-situ material. The 500g sub sample is considered sufficient large to consistently determine the concentration of heavy minerals. The sample size is also considered large enough to assess slimes content and the oversize fraction.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Sieving is carried out to assess the amount of particles greater than 1mm (oversize) and the amount of material less than 45 microns (slimes). The heavy mineral concentration of each sample is determined by carrying a heavy liquid separation (HLS) using an industry-approved liquid with a density of 2.85g/cm3. The heavy liquid is water-soluble and density is monitored closely. The heavy minerals are separated from the lighter minerals (mainly quartz) by sinking in the heavy liquid medium. The heavy minerals are then separated, washed and weighed.
	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not used.
	 Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Field duplicate samples are inserted into each processing batch at a rate of 1:20 samples. External laboratories are also used to analyze the duplicate samples and used as a comparison. Blank samples consisting of either pure quartz sand or the waste light minerals removed from the HLS process are inserted 1:20 samples. Laboratory duplicate samples are inserted randomly in a batch from a sample split prior to HLS. Standard material generated on site, consisting of a low grade, medium grade and high grade samples were homogenized over and extended period to ensure uniformity. Standards were inserted at a rate of 1:20 samples. Light minerals fraction was randomly re-submitted to floating tests way to assess possible remaining trapped heavy minerals content.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	 Mineral sands drilling involves numerous drill holes over large areas with generally, moderate grade intersections. High grade are sometimes encountered however the intersections are a relatively insignificant part of the overall mineralisation, high grade results are often checked by examining the HM "sinks" from the analysis (the HM resulting from the analysis process is stored for further testing).
	The use of twinned holes.	• Drill holes were twinned routinely every 20 holes. The initial hole was drilled at the specified location and then the rig was moved no more than 2m from the original hole and drilled and sampled to the same depth.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic)	• In the laboratory the data is recorded directly into the in-house LIMS software. Once a week the laboratory data is verified by a database manager who runs

Criteria	JORC Code explanation	Commentary
	protocols.	 QA/QC reports. The drill hole collar, survey and geological logging data was also sent for incorporation into the database. The full data was then returned to the onsite geologists for checking, and then uploaded into a secure Acquire database platform. Data is loaded into relevant software for cross sections to be plotted with THM and slime concentrations and interpreted geology so that the base of mineralisation can be reliably predicted.
	Discuss any adjustment to assay data.	No adjustments are made to the assay data for the purposes of public reporting.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The coordinate of each hole was taken at the time of drilling using a hand held GPS with an accuracy of 5m. The coordinate system is UTM 36S (WGS84) A detailed digital elevation model has been generated for the Ravene area using available high-resolution stereo pairs from satellite data. The vertical accuracy of the data is 0.5m.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Hole spacing is approximately 1000m by 500m at Ravene and have been designed to infill historical drilling on a 1000m by 500m spacing so that an overall drill spacing of 500m by 500m was obtained. Data at Ravene together with historical data is sufficient to establish geological and grade continuity needed for an inferred Mineral Resource estimation. The current drilling, on a grid of 1000m x 500m is infilling drilling of historical drilling conducted by Rio Tinto, to obtain a density of 500m x 500m. Samples were composited over an interval of 3m equaling the length of a drill rod.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The mineralisation at Ravene has two trends, the first is the major trend following the general direction of the coast line. The second trend is dictated by dune morphology. The drill holes are arranged along lines that are oriented perpendicular to the major coastal trend, and the orientation and 500m x 500m spacing of holes is considered effective and unbiased in testing the mineralisation.
Sample security	The measures taken to ensure sample security.	 Chain of custody is managed by Savannah. Samples are stored on site in a locked yard. Check samples are then transported to Johannesburg by road freight. Savannah personnel have no contact with the samples once they have been dispatched. HM samples are retrieved as necessary when further mineralogical analysis is required.

Criteria	JORC Code explanation	Commentary
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 An audit and review of the sampling techniques and data have been completed by an independent third party who confirmed that they were appropriate and are being conducted to a suitable standard.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 The Ravene prospect is located with the exploration permit 566L where Savannah is earning a 51% interest in the Block with the remainder being held by JV partner Rio Tinto. The tenement is subject to a memorandum of understanding (MoU) between Rio Tinto and the Mozambican government. The MoU grants Rio Tinto a right of priority to a mining concession in the area covered by the MoU during its term.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• At Ravene, Rio Tinto carried out various field programs from 2000 to 2004, which consisted of sampling using a hand auger and an RC drill program. Interpretation of the field results has been ongoing up to 2013.
Geology	Deposit type, geological setting and style of mineralisation.	• The mineralisation at Ravene is hosted in a sequence of older dune sands that are situated approximately 5km from the present coast line. The general trend of dunes is to the northeast, parallel with the present coast. The dunes themselves are a series of parabolic dunes representing ancient blowouts with mineralisation occurring in both the dune faces and arms of the blowouts. The mineralised dunes, have been mapped as the third in a sequence of older dunes that overlie the fluvial sediments of the Mutamba river. The oldest dunes D1 are characterised by high slimes and a deep red colour and are not present in the Ravene area. The next oldest D2 sands form a basement to the D3 mineralisation seen at Ravene are characterized by a slight colour change, an increase in slimes and lower THM. Overlying the mineralised D3 unit to the east are more recent coastal dunes (D4) that have been blown inland.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 The location of the drilling at Ravene is summarised in the body of this release. Previously completed holes by Rio Tinto are not all reported in this release. All holes completed in this program by Savannah have been reported in this release.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No assays were reported as part of this release as results are still pending
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Exploration results are reported as length weighted averages. No high grade cuts have been applied to the reporting of the exploration results. No metal equivalent values have been used. The drill holes are vertical and the mineralisation is sub vertical.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Relevant diagrams and maps have been included in the main body of the release.

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All results have been reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	The interpretation of the results at Ravene are consistent with the observations and information obtained from historical data collected.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 No further drilling is planned with recent drilling to be incorporated into a mineral resource estimate when they become available

HoleID	HoleType	Prospect	UTM_East	UTM_North	RL	Depth	Company
4892	RC_NQ	Ravene	748531	7333197	70.1	20.5	Savannah Resources
4893	RC_NQ	Ravene	748939	7332908	55.8	21	Savannah Resources
4896	RC_NQ	Ravene	749210	7331535	68.9	33	Savannah Resources
4897	RC_NQ	Ravene	749549	7331324	59.4	18	Savannah Resources
4898	RC_NQ	Ravene	748788	7331803	72.5	33	Savannah Resources
4899	RC_NQ	Ravene	748383	7332080	76.2	45	Savannah Resources
4900	RC_NQ	Ravene	747962	7332359	85.6	21	Savannah Resources
4901	RC_NQ	Ravene	747965	7332364	85.4	21	Savannah Resources
4902	RC_NQ	Ravene	747531	7332653	54.8	30	Savannah Resources
4903	RC_NQ	Ravene	747136	7332917	33.4	12	Savannah Resources
4904	RC_NQ	Ravene	746991	7331810	29.8	12	Savannah Resources
4905	RC_NQ	Ravene	747406	7331529	37.1	21	Savannah Resources
4906	RC_NQ	Ravene	747821	7331252	73.2	48	Savannah Resources
4907	RC_NQ	Ravene	748232	7330956	52.6	24	Savannah Resources
4908	RC_NQ	Ravene	748666	7330679	89.6	45	Savannah Resources
4909	RC_NQ	Ravene	749060	7330405	74.6	21	Savannah Resources
4910	RC_NQ	Ravene	748502	7329581	63.9	42	Savannah Resources
4911	RC_NQ	Ravene	748085	7329859	69.5	12	Savannah Resources
4912	RC_NQ	Ravene	747665	7330145	88.4	57	Savannah Resources
4913	RC_NQ	Ravene	747261	7330421	66.5	18	Savannah Resources
4914	RC_NQ	Ravene	746849	7330699	54.2	18	Savannah Resources
4914	RC_NQ RC_NQ	Ravene	746702	7329588	68.2	36	Savannah Resources
4913	RC_NQ RC_NQ	Ravene	740702	7329313	49.5	15	Savannah Resources
4910	RC_NQ RC_NQ				49.3 74	57	Savannah Resources
4917		Ravene Ravene	747532	7329030	52.7	21	Savannah Resources
	RC_NQ		747798	7327643	81.6	30	Savannah Resources
4919	RC_NQ	Ravene	747387	7327923			
4920	RC_NQ	Ravene	746919	7328163	67.7	33	Savannah Resources
4921	RC_NQ	Ravene	746560	7328481	71	39	Savannah Resources
4922	RC_NQ	Ravene	746142	7328760	46.9	18	Savannah Resources
4923	RC_NQ	Ravene Ravene	746136	7328760	45.9	18 12	Savannah Resources
4924	RC_NQ		746408	7327378	51.8		Savannah Resources
4925	RC_NQ	Ravene	746836	7327107	74.4	45	Savannah Resources
4926	RC_NQ	Ravene	747235	7326818	86.1	48	Savannah Resources
4927	RC_NQ	Ravene	747654	7326547	62.9	45	Savannah Resources
4928	RC_NQ	Ravene	748057	7326268	48.6	12	Savannah Resources
4929	RC_NQ	Ravene	746698	7325991	67.3	42	Savannah Resources
4930	RC_NQ	Ravene	746266	7326260	52.5	27	Savannah Resources
4931	RC_NQ	Ravene	745848	7326558	39.3	15	Savannah Resources
4932	RC_NQ	Ravene	747096	7325706	86.5	48	Savannah Resources
4933	RC_NQ	Ravene	747510	7325429	68.4	24	Savannah Resources
4934	RC_NQ	Ravene	747915	7325179	37.1	33	Savannah Resources
4935	RC_NQ	Ravene	748358	7324878	16.4	12	Savannah Resources
4936	RC_NQ	Ravene	748068	7324492	13.5	21	Savannah Resources
4937	RC_NQ	Ravene	747630	7324828	50.3	42	Savannah Resources
4938	RC_NQ	Ravene	747790	7324030	18	30	Savannah Resources
4939	RC_NQ	Ravene	747367	7324319	55.3	51	Savannah Resources
4940	RC_NQ	Ravene	746950	7324611	63.3	51	Savannah Resources
4941	RC_NQ	Ravene	746955	7324615	62.5	51	Savannah Resources
4942	RC_NQ	Ravene	745291	7325698	47.9	24	Savannah Resources
4943	RC_NQ	Ravene	745706	7325438	36	21	Savannah Resources
4944	RC_NQ	Ravene	746120	7325159	76.6	42	Savannah Resources
4945	RC_NQ	Ravene	746539	7324877	79.6	54	Savannah Resources
4946	RC_NQ	Ravene	745557	7324337	66.4	39	Savannah Resources
4947	RC_NQ	Ravene	745188	7324614	67.7	18	Savannah Resources
4948	RC_NQ	Ravene	744938	7324235	34.2	18	Savannah Resources
4949	RC_NQ	Ravene	745269	7324010	42.9	18	Savannah Resources

Appendix 1. Drill hole collar summary (Datum : UTM36, all holes were vertical)

4950	RC_NQ	Ravene	744629	7323792	34.7	12	Savannah Resources
4950	RC_NQ	Ravene	744962	7323570	58.4	24	Savannah Resources
4952	RC_NQ	Ravene	744571	7320159	54.9	24	Savannah Resources
4953	RC_NQ	Ravene	744883	7319994	30.6	14	Savannah Resources
4954	RC_NQ	Ravene	744158	7320451	74.3	46	Savannah Resources
4955	RC_NQ	Ravene	743755	7320728	45.3	18	Savannah Resources
4956	RC_NQ	Ravene	743169	7319923	62.9	18	Savannah Resources
4957	RC_NQ	Ravene	743599	7319619	71.9	28	Savannah Resources
4958	RC_NQ RC_NQ	Ravene	743998	7319365	84.8	18	Savannah Resources
4959	RC_NQ	Ravene	744456	7319107	52.6	30	Savannah Resources
4960	RC_NQ	Ravene	744799	7318809	32.0	15	Savannah Resources
4961	RC_NQ	Ravene	744799	7318805	31.7	15	Savannah Resources
4962	RC_NQ	Ravene	744268	7317985	38.9	15	Savannah Resources
4963	RC_NQ	Ravene	743795	7318291	79.2	18	Savannah Resources
4964	RC_NQ	Ravene	743035	7318805	68.3	15	Savannah Resources
4965	RC_NQ	Ravene	743503	7318613	92.4	21	Savannah Resources
4966	RC_NQ	Ravene	742890	7317686	72.2	18	Savannah Resources
4967	RC_NQ	Ravene	743286	7317335	79.5	24	Savannah Resources
4968	RC_NQ RC_NQ	Ravene	743280	7316902	25.5	24	Savannah Resources
4969	RC_NQ	Ravene	743732	7317119	57.9	24	Savannah Resources
4970	RC_NQ	Ravene	742728	7316601	74.9	18	Savannah Resources
4971	RC_NQ	Ravene	743162	7316296	56.9	18	Savannah Resources
4972	RC_NQ	Ravene	742205	7315768	78.6	18	Savannah Resources
4973	RC_NQ	Ravene	741766	7316041	73	33	Savannah Resources
4974	RC_NQ	Ravene	741357	7316308	64.4	30	Savannah Resources
4975	RC_NQ	Ravene	740914	7316578	51.8	18	Savannah Resources
4976	RC_NQ	Ravene	740776	7316160	60.3	18	Savannah Resources
4977	RC_NQ	Ravene	740389	7315761	64.6	18	Savannah Resources
4978	RC_NQ	Ravene	740794	7315480	73.4	18	Savannah Resources
4979	RC_NQ	Ravene	741210	7315201	98.3	42	Savannah Resources
4980	RC_NQ	Ravene	741637	7314859	52.6	18	Savannah Resources
4981	RC_NQ	Ravene	741072	7314079	71.7	18	Savannah Resources
4982	RC_NQ	Ravene	740632	7314392	98.3	33	Savannah Resources
4983	RC_NQ	Ravene	740630	7314389	98.4	33	Savannah Resources
4984	RC_NQ	Ravene	740247	7314645	52.9	18	Savannah Resources
4985	RC_NQ	Ravene	739411	7314190	74	18	Savannah Resources
4986	RC_NQ	Ravene	739780	7313895	117.9	27	Savannah Resources
4987	RC_NQ	Ravene	740506	7314047	95.5	24	Savannah Resources
4988	RC_NQ	Ravene	740969	7313832	51	27	Savannah Resources
4998	RC_NQ	Ravene	741209	7316083	84.3	48	Savannah Resources
4999	RC_NQ	Ravene	741802	7315846	71	24	Savannah Resources
5000	RC_NQ	Ravene	743473	7317297	82.7	33	Savannah Resources
5001	RC_NQ	Ravene	743476	7317293	82.6	33	Savannah Resources
5002	RC_NQ	Ravene	743497	7318843	88.4	18	Savannah Resources
5003	RC_NQ	Ravene	744328	7320835	64	42	Savannah Resources
5004	RC_NQ	Ravene	749384	7332328	74.7	21	Savannah Resources
5005	RC_NQ	Ravene	749335	7332612	63.6	18	Savannah Resources
5006	RC_NQ	Ravene	748118	7333475	77.5	24	Savannah Resources
5007	RC_NQ	Ravene	748192	7333889	68.2	39	Savannah Resources
5008	RC_NQ	Ravene	748752	7334183	84.4	24	Savannah Resources
5009	RC_NQ	Ravene	737906	7314524	77.3	33	Savannah Resources
2583	RC_NQ	Ravene	737421	7314847	145	54	Rio Tinto
2584	RC_NQ	Ravene	736999	7315092	111	30	Rio Tinto
2585	RC_NQ	Ravene	738275	7315325	110	33	Rio Tinto Dio Tinto
2586	RC_NQ	Ravene	737935	7315676	108	36	Rio Tinto Rio Tinto
2587	RC_NQ	Ravene	737576	7315984	105	36	Rio Tinto Rio Tinto
2588 2589	RC_NQ	Ravene Ravene	739338 739740	7315919 7315640	121	45 51	Rio Tinto Rio Tinto
	RC_NQ				96 75		
2590	RC_NQ	Ravene	740991	7314817	15	51	Rio Tinto

2501	DC NO	Darrage	741402	7314544	00	51	Die Tinte
2591	RC_NQ	Ravene	741403		99	51	Rio Tinto
2592	RC_NQ	Ravene	741187	7315886	68	42	Rio Tinto
2593	RC_NQ	Ravene	741557	7315639	100	57	Rio Tinto
2594	RC_NQ	Ravene	741976	7315353	77	48	Rio Tinto
2595	RC_NQ	Ravene	742404	7315099	92	45	Rio Tinto
2596	RC_NQ	Ravene	742649	7314922	26	39	Rio Tinto
2597	RC_NQ	Ravene	743161	7315824	11	30	Rio Tinto
2598	RC_NQ	Ravene	743911	7316470	9	24	Rio Tinto
2599	RC_NQ	Ravene	744891	7320619	6	21	Rio Tinto
2600	RC_NQ	Ravene	744761	7319508	70	39	Rio Tinto
2700	RC_NQ	Ravene	744332	7319783	40	54	Rio Tinto
2701	RC_NQ	Ravene	743909	7320069	70	54	Rio Tinto
2702	RC_NQ	Ravene	743795	7318974	84	56	Rio Tinto
2706	RC_NQ	Ravene	744207	7318677	98	63	Rio Tinto
2707	RC_NQ	Ravene	744608	7318427	65	51	Rio Tinto
2708	RC_NQ	Ravene	744503	7317271	27	45	Rio Tinto
2709	RC_NQ	Ravene	744034	7317583	29	42	Rio Tinto
2710	RC_NQ	Ravene	743706	7317862	54	33	Rio Tinto
2711	RC_NQ	Ravene	743246	7318118	86	54	Rio Tinto
2712	RC_NQ	Ravene	742947	7319504	67	30	Rio Tinto
2714	RC_NQ	Ravene	743388	7319259	75	27	Rio Tinto
2715	RC_NQ	Ravene	743496	7320360	67	30	Rio Tinto Rio Tinto
2716	RC_NQ	Ravene	743109	7317058	55	30	
2718	RC_NQ	Ravene	743423	7316733	73	30	Rio Tinto
2719	RC_NQ	Ravene	743236	7316845	58	42	Rio Tinto
2720	RC_NQ	Ravene	741675	7316757	79	36	Rio Tinto
2721	RC_NQ	Ravene	742104	7316477	47 50	30	Rio Tinto
2722	RC_NQ	Ravene	742516	7316184	-	33	Rio Tinto
2723 2724	RC_NQ	Ravene Ravene	742969	7315879	70 36	69 42	Rio Tinto Rio Tinto
2724	RC_NQ RC_NQ	Ravene	742766 740134	7316039 7315379	60	30	Rio Tinto
2723	RC_NQ RC_NQ	Ravene	740134	7315071	73	<u> </u>	Rio Tinto
2728	RC_NQ RC_NQ	Ravene	739605	7314551	69	45	Rio Tinto
2728	RC_NQ RC_NQ	Ravene	739003	7314286	77	48	Rio Tinto
2729	RC_NQ	Ravene	740065	7314315	110	51	Rio Tinto
2739	RC_NQ	Ravene	738607	7313985	82	45	Rio Tinto
2740	RC NQ	Ravene	739169	7314841	86	60	Rio Tinto
2740	RC_NQ RC_NQ	Ravene	738789	7315099		45	Rio Tinto
2741	RC_NQ	Ravene	743687	7321448	92	45	Rio Tinto
2742	RC_NQ RC_NQ	Ravene	744071	7321448	49	30	Rio Tinto
2743	RC_NQ RC_NQ	Ravene	744509	7320898	46	30	Rio Tinto
2744	RC_NQ	Ravene	744233	7322287	50	45	Rio Tinto
2745	RC_NQ	Ravene	744660	7322007	30	24	Rio Tinto
2740	RC_NQ	Ravene	744369	7323398	27	27	Rio Tinto
2748	RC_NQ	Ravene	744773	7323131	29	30	Rio Tinto
2740	RC_NQ	Ravene	745064	7325330	41	27	Rio Tinto
2750	RC_NQ	Ravene	745494	7325059	50	33	Rio Tinto
2751	RC_NQ	Ravene	745907	7324777	55	42	Rio Tinto
2752	RC_NQ	Ravene	746357	7324598	67	42	Rio Tinto
2753	RC_NQ	Ravene	746847	7324342	70	39	Rio Tinto
2754	RC_NQ	Ravene	745615	7326172	77	48	Rio Tinto
2755	RC_NQ	Ravene	745984	7325899	38	30	Rio Tinto
2756	RC_NQ	Ravene	746479	7325595	50	33	Rio Tinto
2757	RC_NQ	Ravene	746874	7325307	70	51	Rio Tinto
2758	RC_NQ	Ravene	747426	7326163	68	39	Rio Tinto
2759	RC_NQ	Ravene	747861	7325870	84	42	Rio Tinto
2760	RC_NQ	Ravene	747314	7325076	60	36	Rio Tinto
2761	RC_NQ	Ravene	747005	7326396	80	54	Rio Tinto
2762	RC_NQ	Ravene	746622	7326721	92	54	Rio Tinto

2762	DC NO	Darrage	746191	7226095	10	22	Die Tinte
2763	RC_NQ	Ravene	746181	7326985	46	33	Rio Tinto
2764	RC_NQ	Ravene	744547	7324504	43	33	Rio Tinto
2773	RC_NQ	Ravene	744670	7325613	58	51	Rio Tinto
2774	RC_NQ	Ravene	745197	7326438	76	51	Rio Tinto
2775	RC_NQ	Ravene	748422	7326689	40	30	Rio Tinto
2777	RC_NQ	Ravene	747994	7326978	38	42	Rio Tinto
2778	RC_NQ	Ravene	747586	7327275	51	42	Rio Tinto
2779	RC_NQ	Ravene	747141	7327598	64	39	Rio Tinto
2780	RC_NQ	Ravene	746762	7327829	80	69	Rio Tinto
2781	RC_NQ	Ravene	746326	7328121	67	48	Rio Tinto
2782	RC_NQ	Ravene	746481	7329215	55	36	Rio Tinto
2784	RC_NQ	Ravene	746901	7328928	46	33	Rio Tinto
2785	RC_NQ	Ravene	747301	7328661	74	51	Rio Tinto
2786	RC_NQ	Ravene	747709	7328371	65	48	Rio Tinto
2787	RC_NQ	Ravene	748130	7328106	61	45	Rio Tinto
2788	RC_NQ	Ravene	749111	7328643	43	45	Rio Tinto
2790	RC_NQ	Ravene	748711	7328902	36	33	Rio Tinto
2791	RC_NQ	Ravene	748282	7329192	45	33	Rio Tinto
2792	RC_NQ	Ravene	747871	7329469	53	54	Rio Tinto
2793	RC_NQ	Ravene	747484	7329750	74	66	Rio Tinto
2794	RC_NQ	Ravene	747037	7330022	76	66	Rio Tinto
2795	RC_NQ	Ravene	746625	7330331	58	33	Rio Tinto
2796	RC_NQ	Ravene	747181	7331162	47	33	Rio Tinto
2797	RC_NQ	Ravene	747601	7330867	43	30	Rio Tinto
2798	RC_NQ	Ravene	748015	7330591	87	69	Rio Tinto
2799	RC_NQ	Ravene	748439	7330323	71	66	Rio Tinto
2800	RC_NQ	Ravene	748891	7330063	69	57	Rio Tinto
2801	RC_NQ	Ravene	749228	7329760	59	36	Rio Tinto
2802	RC_NQ	Ravene	749387	7330868	49	33	Rio Tinto
2803	RC_NQ	Ravene	748997	7331147	57	48	Rio Tinto
2804	RC_NQ	Ravene	748555	7331367	81	45	Rio Tinto
2805	RC_NQ	Ravene	748158	7331704	97	69	Rio Tinto
2806	RC_NQ	Ravene	747737	7331973	101	54	Rio Tinto
2807	RC_NQ	Ravene	747297	7332263	70	54	Rio Tinto
2808	RC_NQ	Ravene	747471	7333391	39	30	Rio Tinto
2809	RC_NQ	Ravene	747885	7333089	53	30	Rio Tinto
2810	RC_NQ	Ravene	748328	7332826	91	51	Rio Tinto
2811	RC_NQ	Ravene	748714	7332522	72	51	Rio Tinto
2812	RC_NQ	Ravene	749137	7332255	70	39	Rio Tinto
2813	RC_NQ	Ravene	749499	7331980	55	48	Rio Tinto
2814	RC_NQ	Ravene	750027	7332828	57	51	Rio Tinto
2815	RC_NQ	Ravene	749693	7333077	57	39	Rio Tinto
2816	RC_NQ	Ravene	749266	7333352	54	45	Rio Tinto
2817	RC_NQ	Ravene	748834	7333642	28	27	Rio Tinto
2818	RC_NQ	Ravene	748414	7333897	73	42	Rio Tinto
2819	RC_NQ	Ravene	748030	7334192	62	33	Rio Tinto
2820	RC_NQ	Ravene	737109	7314359	76	33	Rio Tinto
3296	RC_NQ	Ravene	737568	7314325	104	48	Rio Tinto
3297	RC_NQ	Ravene	736634	7315294	105	36	Rio Tinto
3307	RC_NQ	Ravene	737085	7315309	112	30	Rio Tinto
3308	RC_NQ	Ravene	737593	7315300	125	30	Rio Tinto
3309	RC_NQ	Ravene	737593	7315300	129	33	Rio Tinto
5507		1.00,000	101075	/010000	127	55	ino rinto

HoleID Ave THM % Prospect1 From То Company 4896 Ravene 21 4.3 Savannah Resources 0 4898 0 9 3.1 Ravene Savannah Resources 4899 Ravene 0 36 3.4 Savannah Resources 4902 0 Ravene 18 3.6 Savannah Resources 4906 0 36 3.4 Savannah Resources Ravene 4908 Ravene 0 36 3.2 Savannah Resources 4909 0 3.6 6 Savannah Resources Ravene 4910 0 3.4 Ravene 18 Savannah Resources 4912 3.4 Ravene 0 33 Savannah Resources 4914 0 9 3.0 Ravene Savannah Resources 4915 0 6 4.0 Ravene Savannah Resources 4920 Ravene 0 15 3.4 Savannah Resources 4921 Ravene 0 27 3.6 Savannah Resources 4925 0 27 4.5 Savannah Resources Ravene 33 4926 4.1 Savannah Resources Ravene 0 4927 Ravene 0 24 3.1 Savannah Resources 4929 0 15 4.3 Savannah Resources Ravene 4930 4.1 0 18 Savannah Resources Ravene 39 4932 Ravene 0 6.2 Savannah Resources 4939 Ravene 0 33 4.9 Savannah Resources 4940 Ravene 0 18 5.7 Savannah Resources 4944 0 5.0 36 Ravene Savannah Resources 4945 Ravene 0 21 7.0 Savannah Resources 4946 Ravene 0 27 7.1 Savannah Resources 4949 0 4.3 Ravene 6 Savannah Resources 4951 Ravene 0 15 3.7 Savannah Resources 4952 15 7.7 Ravene 0 Savannah Resources 4954 0 42 5.9 Savannah Resources Ravene 24 5.7 4957 0 Savannah Resources Ravene 3.2 4958 Ravene 0 6 Savannah Resources 4959 Ravene 0 21 3.8 Savannah Resources 4965 3.0 0 15 Savannah Resources Ravene 4967 0 12 4.6 Ravene Savannah Resources 4969 Ravene 0 9 3.2 Savannah Resources 4973 Ravene 0 18 3.9 Savannah Resources 4974 0 Ravene 18 3.8 Savannah Resources 4979 0 36 Ravene 6.4 Savannah Resources 4982 0 24 3.9 Ravene Savannah Resources 4987 0 9 4.6 Savannah Resources Ravene 39 4998 Ravene 0 6.1 Savannah Resources 5000 27 6.7 Savannah Resources Ravene 0 5002 0 3.1 Savannah Resources Ravene 6 0 5003 5.4 Ravene 36 Savannah Resources 5004 Ravene 0 9 4.6 Savannah Resources 5007 18 Ravene 0 4.0 Savannah Resources 5009 Ravene 0 24 4.6 Savannah Resources 2583 0 42 3.9 Ravene **Rio** Tinto 2591 Ravene 0 33 6.0 Rio Tinto 9 Rio Tinto 2592 Ravene 0 3.4 2593 0 48 7.5 Rio Tinto Ravene 2594 0 27 3.5 Rio Tinto Ravene 2598 0 18 3.7 Rio Tinto Ravene 2700 0 51 3.5 Rio Tinto Ravene 2701 0 39 Rio Tinto Ravene 3.8 2702 Ravene 0 45 5.6 Rio Tinto 2706 Ravene 0 51 5.5 Rio Tinto 2710 0 9 3.6 Rio Tinto Ravene 2711 0 27 5.5 Rio Tinto Ravene 2720 Ravene 0 9 5.6 Rio Tinto

Appendix 2. Average total heavy minerals from drill holes with a greater than 3% THM supported cut off.

2724	Ravene	0	12	6.1	Rio Tinto
2724	Ravene	0	21	4.5	Rio Tinto
2750	Ravene	0	6	6.7	Rio Tinto
2750	Ravene	0	12	4.9	Rio Tinto
2752	Ravene	0	30	4.3	Rio Tinto
2753	Ravene	0	21	4.3	Rio Tinto
2754		0	36	4.8	Rio Tinto
2756	Ravene	0	15	3.0	Rio Tinto
2756	Ravene	0	39	5.5	Rio Tinto
	Ravene		24		
2758	Ravene	0		5.5	Rio Tinto
2759	Ravene	0	6	3.4	Rio Tinto
2761	Ravene	0	33	3.7	Rio Tinto
2762	Ravene	0	30	8.3	Rio Tinto
2780	Ravene	0	63	5.4	Rio Tinto
2781	Ravene	0	21	5.4	Rio Tinto
2785	Ravene	0	33	4.6	Rio Tinto
2786	Ravene	0	6	3.0	Rio Tinto
2788	Ravene	0	33	3.0	Rio Tinto
2792	Ravene	0	6	3.2	Rio Tinto
2794	Ravene	0	12	4.4	Rio Tinto
2795	Ravene	0	15	5.0	Rio Tinto
2797	Ravene	0	9	3.0	Rio Tinto
2798	Ravene	0	54	4.6	Rio Tinto
2799	Ravene	0	42	3.6	Rio Tinto
2800	Ravene	0	51	4.8	Rio Tinto
2801	Ravene	0	12	4.4	Rio Tinto
2803	Ravene	0	9	4.4	Rio Tinto
2805	Ravene	0	63	4.9	Rio Tinto
2806	Ravene	0	33	4.0	Rio Tinto
2807	Ravene	0	33	6.5	Rio Tinto
2810	Ravene	0	39	3.0	Rio Tinto
2811	Ravene	0	24	5.9	Rio Tinto
2812	Ravene	0	24	7.4	Rio Tinto
2813	Ravene	0	27	4.5	Rio Tinto
2814	Ravene	0	12	4.5	Rio Tinto
2815	Ravene	0	21	3.4	Rio Tinto
2818	Ravene	0	27	4.1	Rio Tinto
2820	Ravene	0	12	3.6	Rio Tinto
3307	Ravene	0	18	3.1	Rio Tinto
3308	Ravene	0	18	3.6	Rio Tinto
5500	itu vene	0	10	5.0	

HoleID	Prospect	From	То	Average THM %	Company
4925	Ravene	0	6	6.7	Savannah Resources
4932	Ravene	0	36	6.5	Savannah Resources
4939	Ravene	0	30	5.1	Savannah Resources
4940	Ravene	0	15	6.1	Savannah Resources
4944	Ravene	0	21	6.3	Savannah Resources
4945	Ravene	0	15	8.1	Savannah Resources
4946	Ravene	0	27	7.1	Savannah Resources
4952	Ravene	0	12	8.7	Savannah Resources
4954	Ravene	0	33	6.3	Savannah Resources
4957	Ravene	0	21	5.9	Savannah Resources
4967	Ravene	0	6	5.1	Savannah Resources
4979	Ravene	0	33	6.7	Savannah Resources
4998	Ravene	0	39	6.1	Savannah Resources
5000	Ravene	0	12	10.5	Savannah Resources
5003	Ravene	0	24	6.2	Savannah Resources
5004	Ravene	0	3	5.3	Savannah Resources
2591	Ravene	0	30	6.3	Rio Tinto
2593	Ravene	0	45	7.7	Rio Tinto
2702	Ravene	0	42	5.8	Rio Tinto
2706	Ravene	0	48	5.6	Rio Tinto
2711	Ravene	0	27	5.5	Rio Tinto
2720	Ravene	0	9	5.6	Rio Tinto
2724	Ravene	0	9	7.0	Rio Tinto
2738	Ravene	0	6	5.1	Rio Tinto
2750	Ravene	0	6	6.7	Rio Tinto
2753	Ravene	0	12	6.0	Rio Tinto
2757	Ravene	0	27	6.4	Rio Tinto
2758	Ravene	0	21	5.6	Rio Tinto
2761	Ravene	0	6	6.3	Rio Tinto
2762	Ravene	0	12	15.4	Rio Tinto
2780	Ravene	0	63	5.4	Rio Tinto
2781	Ravene	0	12	5.7	Rio Tinto
2785	Ravene	0	15	5.4	Rio Tinto
2794	Ravene	0	6	5.0	Rio Tinto
2795	Ravene	0	15	5.0	Rio Tinto
2798	Ravene	0	21	6.5	Rio Tinto
2800	Ravene	0	30	5.9	Rio Tinto
2805	Ravene	0	51	5.2	Rio Tinto
2807	Ravene	0	18	9.1	Rio Tinto
2811	Ravene	0	18	6.6	Rio Tinto
2812	Ravene	0	21	7.9	Rio Tinto
2814	Ravene	0	3	5.1	Rio Tinto

Appendix 3. Average total heavy minerals from drill holes with a greater than 5% THM supported cut off