

AIM: ALL, ASX: A11, OTC: ALLIF

29 November 2022

Mineralisation Extended – Multiple Intersections Highest Grade of 6.78% Li₂O reported **Ongoing Resource Extension and Infill Drilling Results** Ewoyaa Lithium Project Ghana, West Africa

Atlantic Lithium Limited (AIM: ALL, OTCQX: ALLIF, ASX: A11 "Atlantic Lithium" or the "Company"), the funded African-focussed lithium exploration and development company targeting to deliver Ghana's first lithium mine, is pleased to announce assay results from the resource and exploration drilling programme now completed at the Ewoyaa Lithium Project ("Ewoyaa" or the "Project") in Ghana, West Africa.

HIGHLIGHTS:

- Assay results reported for a further 10,679m of exploration and infill diamond drilling ("DD") and reverse circulation ("RC") drilling completed at the Ewoyaa Main, Ewoyaa North-East, Kaampakrom and Grasscutter West deposits, part of the now completed resource evaluation and exploration RC and DD programme.
- Newly reported drilling results fall both within and outside the currently defined 30.1Mt @ 1.26% Li₂O Ewoyaa JORC (2012) Compliant Mineral Resource Estimate ("MRE" or the "Resource"); extending mineralisation at the Ewoyaa North-East and Ewoyaa Main deposits, defining new mineralisation from surface at the Kaampakrom North deposit and providing further confidence in Resource conversion at the Kaampakrom West deposit.
- Multiple high-grade exploration drill intersections outside of the current MRE reported at the Ewoyaa North-East, Kaampakrom West and Ewoyaa Main deposits, including highlights of:
 - o GRC0785: 35m at 1.48% Li₂O from 111m
 - GRC0760: 27m at 1.71% Li₂O from 155m
 - GRC0769: 46m at 0.96% Li₂O from 51m
 - GRC0775: 20m at 1.85% Li₂O from 72m
 - GRC0777: 24m at 1.43% Li₂O from 108m
 - GRC0763: 26m at 1.26% Li₂O from 163m
 - GRC0759A: 17m at 1.69% Li₂O from 114m
 - GRC0777: 14m at 1.89% Li₂O from 140m
 - GRC0775: 13m at 1.91% Li₂O from 117m
 - GRC0800: 23m at 1.01% Li₂O from 263m
 - GRC0759A: 18m at 1.24% Li₂O from 148m
 - GRC0779: 14m at 1.43% Li₂O from 137m 0
 - GRC0776: 10m at 1.96% Li₂O from 190m

- Broad and high-grade infill drill intersections within the current MRE, reported at the Ewoyaa Main and Ewoyaa North-East deposits, including highlights of:
 - o GDD0090: 63.6m at 1.86% Li₂O from 14.3m
 - o GDD0089: 68m at 1.37% Li₂O from 15m
 - o GRC0756: 60m at 1.36% Li₂O from 29m
 - o GDD0098: 24.4m at 1.72% Li₂O from 38.6m
 - o GDD0090: 17.9m at 1.37% Li₂O from 79.5m
 - o GDD0094: 21m at 0.96% Li₂O from 46m
- Highest grade of 6.78% Li₂O confirmed in previously reported hole GDD0071 from 31m to 32m (refer RNS of 20 October 2022), and additional high-grades of 5.14% Li₂O in hole GDD0090 from 30m to 31m and 4.78% Li₂O from 31m to 31.8m.
- Approximately 37,000m of results from the 47,000m drilling programme reported to date.
- Recently announced Pre-Feasibility Study (refer RNS of 22 September 2022) delivers exceptional financial outcomes for a 2Mtpa operation, producing an average c. 255,000tpa of 6% Li₂O spodumene concentrate ("SC6") over a 12.5-year operation:
 - LOM revenues exceeding US\$4.84bn, Post-tax NPV₈ of US\$1.33bn, IRR of 224% over 12.5 years
 - U\$\$125m capital cost with industry-leading payback period of <5 months
 - C1 cash operating costs of US\$278 per tonne of 6% lithium spodumene concentrate Free on Board ("FOB") Ghana Port, after by-product credits
 - Average Life of Mine ("LOM") EBITDA of US\$248m per annum
 - o 18.9Mt at 1.24% Li₂O Maiden Ore Reserve
 - Average annualised US\$1,359/dry metric tonne SC6 pricing used

Commenting on the Company's latest progress, Lennard Kolff, Interim Chief Executive Officer of Atlantic Lithium, said:

"Drilling continues to deliver high-grade drill intersections both within and outside the current MRE.

"This latest batch of results has delivered multiple drill intersections outside the resource footprint at the Ewoyaa North-East, Kaampakrom West and Ewoyaa Main deposits, including highlights of 35m at 1.48% Li2O from 111m and 27m at 1.71% Li2O from 155m at the Ewoyaa North-East deposit.

"Drilling has returned high-grade results at the Kaampakrom West deposit, including highlights of 20m at 1.85% Li₂O from 72m, 14m at 1.89% Li₂O from 140m, 14m at 1.89% Li₂O from 140m and 13m at 1.91% Li₂O from 117m, in addition to our highest-grade assay result of 6.78% Li₂O over a 1m interval in drilling at the Ewoyaa Main 'Starter Pit' for this programme.

"We have reported approximately 37,000m of the 47,000m programme to date, with 10,000m of assays pending and a Resource upgrade expected early 2023. The increased Resource estimate will inform a Definitive Feasibility Study, targeted for completion in mid-2023.

"With the Pre-Feasibility Study now delivered, the Mining Licence application submitted, ongoing positive drilling results and with the support of our funding agreement with Piedmont Lithium, we feel the Company is ideally positioned to benefit from the unprecedented levels of lithium demand that are expected over the coming years."

New Drilling Results:

Further assay results have been received for an additional 10,679m of RC and DD drilling from the recently completed drill programme at the Ewoyaa Project. Multiple high-grade drill intersections are reported for exploration drilling results outside of the currently defined Resource at the Ewoyaa North-East, Kaampakrom West, Ewoyaa Main and Grasscutter West and deposits (refer Table 1, Appendix 1 and Appendix 2).

High-grade infill drill intersections are reported within the Ewoyaa Main and Ewoyaa North-East deposits, which fall within the currently defined 30.1Mt @ 1.26% Li₂O MRE (*refer Table 2, Appendix 1* and *Appendix 2*).

Table 1: High-grade exploration drill intersection highlights at greater than 10 Li x m, reported at a 0.4% Li₂O cutoff and a maximum of 4m internal dilution at the Ewoyaa North-East, Kaampakrom West, Ewoyaa Main and Grasscutter West deposits.

Hole ID	Target	Deposit	From m	To m	Interval m	Hole depth m	assay Li₂O %	Intersection	metal content Li x m
GRC0785	EXPL	NE	111	146	35	190	1.48	GRC0785: 35m at 1.48% Li2O from 111m	51.68
GRC0760	EXPL	NE	155	182	27	240	1.70	GRC0760: 27m at 1.71% Li2O from 155m	45.94
GRC0769	EXPL	KPKW	51	97	46	119	0.96	GRC0769: 46m at 0.96% Li2O from 51m	44.16
GRC0775	EXPL	KPKW	72	92	20	150	1.85	GRC0775: 20m at 1.85% Li2O from 72m	37.00
GRC0777	EXPL	KPKW	108	132	24	180	1.42	GRC0777: 24m at 1.43% Li2O from 108m	34.12
GRC0763	EXPL	NE	163	189	26	270	1.25	GRC0763: 26m at 1.26% Li2O from 163m	32.56
GRC0759A	EXPL	NE	114	131	17	230	1.69	GRC0759A: 17m at 1.69% Li2O from 114m	28.73
GRC0777	EXPL	KPKW	140	154	14	180	1.89	GRC0777: 14m at 1.89% Li2O from 140m	26.42
GRC0775	EXPL	KPKW	117	130	13	150	1.91	GRC0775: 13m at 1.91% Li2O from 117m	24.80
GRC0800	EXPL	Main	263	286	23	347	1.00	GRC0800: 23m at 1.01% Li2O from 263m	23.01
GRC0759A	EXPL	NE	148	166	18	230	1.24	GRC0759A: 18m at 1.24% Li2O from 148m	22.31
GRC0779	EXPL	NE	137	151	14	272	1.43	GRC0779: 14m at 1.43% Li2O from 137m	19.98
GRC0776	EXPL	NE	190	200	10	260	1.95	GRC0776: 10m at 1.96% Li2O from 190m	19.51
GRC0798	EXPL	Main	254	267	13	322	1.16	GRC0798: 13m at 1.17% Li2O from 254m	15.09
GRC0796	EXPL	Main	237	248	11	300	1.32	GRC0796: 11m at 1.33% Li2O from 237m	14.53
GRC0762	EXPL	NE	81	88	7	223	1.88	GRC0762: 7m at 1.88% Li2O from 81m	13.16
GRC0799	EXPL	NE	182	194	12	210	0.99	GRC0799: 12m at 1% Li2O from 182m	11.92
GRC0755	EXPL	GrassW	172	194	22	241	0.53	GRC0755: 22m at 0.53% Li2O from 172m	11.66

Table 2: High-grade infill drill intersection highlights at greater than 10 Li x m, reported at a 0.4% Li₂O cut-off and maximum of 4m of internal dilution at the Ewoyaa Main and Ewoyaa North-East deposits.

Hole ID	Target	Deposit	From m	To m	Interval m	Hole depth	assay Li ₂ O %	Intersection	metal content
						m .	_		Li x m
GDD0090	IND	NE	14.3	77.9	63.6	114	1.86	GDD0090: 63.6m at 1.86% Li2O from 14.3m	118.02
GDD0089	MEA	Main	15	83	68	90.8	1.37	GDD0089: 68m at 1.37% Li2O from 15m	92.88
GRC0756	MEA	Main	29	89	60	90	1.35	GRC0756: 60m at 1.36% Li2O from 29m	81.23
GDD0098	IND	Main	38.6	63	24.4	170.4	1.72	GDD0098: 24.4m at 1.72% Li2O from 38.6m	41.94
GDD0090	IND	NE	79.5	97.4	17.9	114	1.36	GDD0090: 17.9m at 1.37% Li2O from 79.5m	24.41
GDD0094	IND	Main	46	67	21	95.4	0.95	GDD0094: 21m at 0.96% Li2O from 46m	19.97
GDD0096	IND	Main	45	62	17	83.4	0.95	GDD0096: 17m at 0.95% Li2O from 45m	16.07
GRC0781	IND	KPKW	80	88	8	110	1.74	GRC0781: 8m at 1.75% Li2O from 80m	13.95

Exploration drilling results outside the 30.1Mt at 1.26% Li₂O Resource continue to demonstrate further resource scale potential at the Ewoyaa Project, where multiple new drilling intersections have confirmed mineralisation extensions at the Ewoyaa North-East, Kaampakrom West, Ewoyaa Main and Grasscutter West deposits (*refer Figure 1, Figure 2, Figure 3* and *Figure 4*).

Resource infill drilling results received to date at the Ewoyaa Main and Ewoyaa North-East deposits have confirmed good mineralisation continuity and increased resource confidence on a nominal 40m x 40m Indicated grid and 20m x 20m Measured grid. Measured drilling targeted the first 1.5 to 2 years of planned production at the Ewoyaa Main deposit. Additionally, infill drilling provided further material for test-work and customer acceptance samples within the planned starter pit.

High grades were reported within the Kaampakrom West deposit including highlights of 20m at 1.85% Li_2O from 72m, 14m at 1.89% Li_2O from 140m, 14m at 1.89% Li_2O from 140m and 13m at 1.91% Li_2O from 117m.

Sample preparation was completed by Intertek Ghana and assay by Intertek Perth with all reported results passing QA/QC protocols, providing confidence in reported results.

ATLANTIC LITHIUM

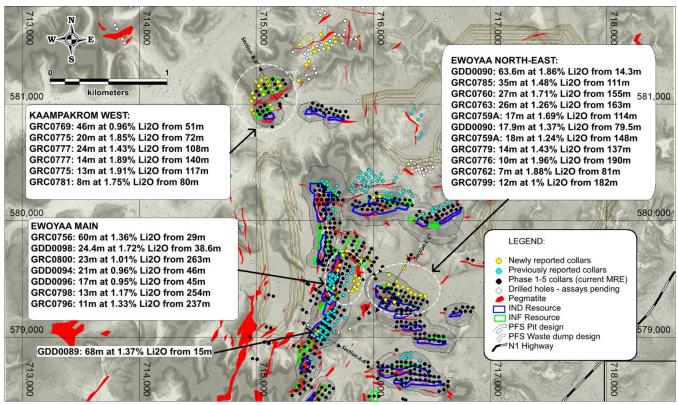


Figure 1: Location of reported assay results with highlight drill intersections.

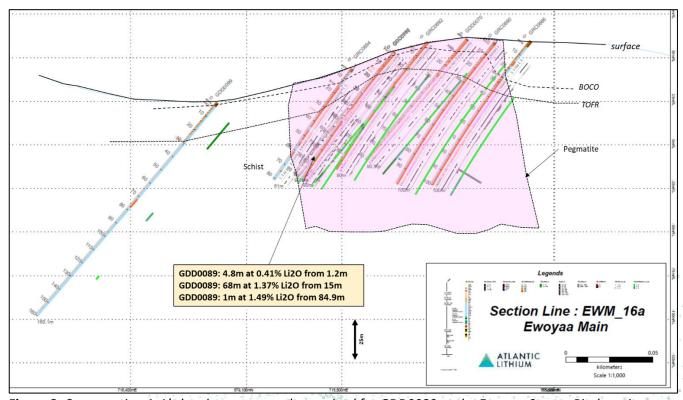


Figure 2: Cross-section A-A' showing assay results received for GDD0089 at the Ewoyaa Starter Pit deposit

Atlantic Lithium Limited ACN 127 215 132 AIM: ALL, ASX: A11, OTC: ALLIF Registered Address Level 33, Australia Square, 264 George Street, Sydney NSW 2000 Contact T: +61 2

T: +61 2 8072 0640
E: info@atlanticlithium.com.au
W: www.atlanticlithium.com.au

ATLANTIC LITHIUM

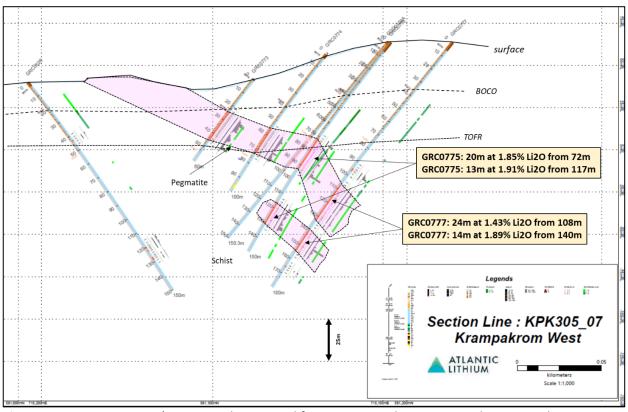
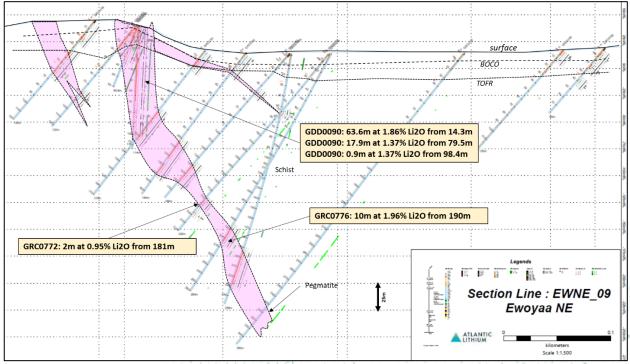



Figure 3: Cross-section B-B' assay results received forGRC0775 and GRC0777 at the Kaampakrom West target.

Figure 4: Cross-section C-C' assay results received for GDD0090, GRC0776 and GRC0772 at the Ewoyaa North-East deposit.

Atlantic Lithium Limited ACN 127 215 132 AIM: ALL, ASX: A11, OTC: ALLIF Registered Address Level 33, Australia Square, 264 George Street, Sydney NSW 2000 Contact

T: +61 2 8072 0640
E: info@atlanticlithium.com.au
W: www.atlanticlithium.com.au

Competent Persons

Information in this report relating to the exploration results is based on data reviewed by Mr Lennard Kolff (MEcon. Geol., BSc. Hons ARSM), Chief Geologist of the Company. Mr Kolff is a Member of the Australian Institute of Geoscientists who has in excess of 20 years' experience in mineral exploration and is a Qualified Person under the AIM Rules. Mr Kolff consents to the inclusion of the information in the form and context in which it appears.

Information in this report relating to Mineral Resources was compiled by Shaun Searle, a Member of the Australian Institute of Geoscientists. Mr Searle has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Searle is a director of Ashmore. Ashmore and the Competent Person are independent of the Company and other than being paid fees for services in compiling this report, neither has any financial interest (direct or contingent) in the Company. Mr Searle consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

The reported Ore Reserves have been compiled by Mr Harry Warries. Mr Warries is a Fellow of the Australasian Institute of Mining and Metallurgy and an employee of Mining Focus Consultants Pty Ltd. He has sufficient experience, relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking, to qualify as a Competent Person as defined in the 'Australasian Code for Reporting of Mineral Resources and Ore Reserves' of December 2012 ("JORC Code") as prepared by the Joint Ore Reserves Committee of the Australasian Institute of Mining and Metallurgy, the Australian Institute of Geoscientists and the Minerals Council of Australia. Mr Warries gives Atlantic Lithium Limited consent to use this reserve estimate in reports.

This announcement contains inside information for the purposes of Article 7 of the Market Abuse Regulation (EU) 596/2014 as it forms part of UK domestic law by virtue of the European Union (Withdrawal) Act 2018 ("MAR"), and is disclosed in accordance with the Company's obligations under Article 17 of MAR.

For any further information, please contact:

Atlantic Lithium Limited

Lennard Kolff (Interim CEO)
Amanda Harsas (Finance Director and Company Secretary)
www.atlanticlithium.com.au
atlantic@yellowjerseypr.com

SP Angel Corporate Finance LLP

Nominated Adviser Jeff Keating Charlie Bouverat

Atlantic Lithium Limited ACN 127 215 132 AIM: ALL, ASX: A11, OTC: ALLIF Registered Address Level 33, Australia Square, 264 George Street, Sydney NSW 2000 Contact
T: +61 2 8072 0640
E: info@atlanticlithium.com.au
W: www.atlanticlithium.com.au

Tel: +61 2 8072 0640

Tel: +44 (0)20 3470 0470

Canaccord Genuity Limited

Joint Company Broker Raj Khatri James Asensio Harry Rees Tel: +44 (0) 20 7523 4500

Liberum Capital Limited

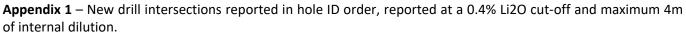
Joint Company Broker Scott Mathieson Edward Thomas Kane Collings Tel: +44 (0) 20 3100 2000

Yellow Jersey PR Limited

Henry Wilkinson Dominic Barretto James Lingfield Tel: +44 (0)20 3004 9512

Notes to Editors:

About Atlantic Lithium


www.atlanticlithium.com.au

Atlantic Lithium (formerly "IronRidge Resources") is an AIM and ASX-listed lithium company advancing a portfolio of lithium projects in Ghana and Côte d'Ivoire through to production.

The Company's flagship project, the Ewoyaa Project in Ghana, is a significant lithium spodumene pegmatite discovery on track to become Ghana's first lithium-producing mine. The Company signed a funding agreement with Piedmont Lithium Inc. for US\$103m towards the development of the Ewoyaa Project. Based on the Pre-Feasibility Study, the Ewoyaa Project has indicated Life of Mine revenues exceeding US\$4.84bn, producing a spodumene concentrate via simple gravity only process flowsheet.

Atlantic Lithium holds 560km² & 774km² of tenure across Ghana and Côte d'Ivoire respectively, comprising significantly under-explored, highly prospective licenses.

Hole ID	Hole targe t	Deposit	From m	To m	Inter val m	Hole depth m	Assay Li2O %	Intersection Comment	metal content Li x m
GDD0089	MEA	Main	1.2	6	4.8	90.8	0.41	GDD0089: 4.8m at 0.41% Li2O from 1.2m	1.96
GDD0089	MEA	Main	15	83	68	90.8	1.37	GDD0089: 68m at 1.37% Li2O from 15m	92.88
GDD0089	MEA	Main	84.9	85.9	1	90.8	1.49	GDD0089: 1m at 1.49% Li2O from 84.9m	1.49
GDD0090	IND	NE	14.3	77.9	63.6	114	1.86	GDD0090: 63.6m at 1.86% Li2O from 14.3m	118.02
GDD0090	IND	NE	79.5	97.4	17.9	114	1.36	GDD0090: 17.9m at 1.37% Li2O from 79.5m	24.41
GDD0090	IND	NE	98.4	99.3	0.9	114	1.37	GDD0090: 0.9m at 1.37% Li2O from 98.4m	1.23
GDD0091	IND	NE	3	4	1	90.8	0.70	GDD0091: 1m at 0.7% Li2O from 3m	0.70
GDD0094	IND	Main	12	14	2	95.4	0.44	GDD0094: 2m at 0.44% Li2O from 12m	0.88
GDD0094	IND	Main	46	67	21	95.4	0.95	GDD0094: 21m at 0.96% Li2O from 46m	19.97
GDD0094	IND	Main	68.6	73.5	4.9	95.4	0.41	GDD0094: 4.9m at 0.41% Li2O from 68.6m	2.01
GDD0096	IND	Main	19	21	2	83.4	0.70	GDD0096: 2m at 0.7% Li2O from 19m	1.39
GDD0096	IND	Main	45	62	17	83.4	0.95	GDD0096: 17m at 0.95% Li2O from 45m	16.07
GDD0098	IND	Main	38.6	63	24.4	170.4	1.72	GDD0098: 24.4m at 1.72% Li2O from 38.6m	41.94
GDD0098	IND	Main	99.9	111.3	11.4	170.4	0.79	GDD0098: 11.4m at 0.79% Li2O from 99.9m	9.00
GDD0098	IND	Main	111.7	119.9	8.2	170.4	0.57	GDD0098: 8.2m at 0.58% Li2O from 111.7m	4.70
GDD0098	IND	Main	120.4	127.5	7.1	170.4	0.48	GDD0098: 7.1m at 0.49% Li2O from 120.4m	3.44
GDD0098	IND	Main	128.1	137.3	9.2	170.4	0.93	GDD0098: 9.2m at 0.93% Li2O from 128.1m	8.5
GDD0098	IND	Main	141.8	143.8	2	170.4	0.45	GDD0098: 2m at 0.45% Li2O from 141.8m	0.89
GDD0098	IND	Main	147.5	148.3	0.8	170.4	0.83	GDD0098: 0.8m at 0.83% Li2O from 147.5m	0.66
GRC0755	EXPL	GrassW	82	89	7	241	1.18	GRC0755: 7m at 1.19% Li2O from 82m	8.28
GRC0755	EXPL	GrassW	172	194	22	241	0.53	GRC0755: 22m at 0.53% Li2O from 172m	11.66
GRC0756	MEA	Main	17	18	1	90	0.41	GRC0756: 1m at 0.41% Li2O from 17m	0.43
GRC0756	MEA	Main	29	89	60	90	1.35	GRC0756: 60m at 1.36% Li2O from 29m	81.23
GRC0757	EXPL	NE	117	122	5	230	1.32	GRC0757: 5m at 1.32% Li2O from 117m	6.59
GRC0757	EXPL	NE	127	135	8	230	0.82	GRC0757: 8m at 0.82% Li2O from 127m	6.52
GRC0758	EXPL	GrassW	66	74	8	250	1.15	GRC0758: 8m at 1.16% Li2O from 66m	9.23
GRC0758	EXPL	GrassW	81	83	2	250	0.91	GRC0758: 2m at 0.91% Li2O from 81m	1.82
GRC0758	EXPL	GrassW	173	175	2	250	0.85	GRC0758: 2m at 0.85% Li2O from 173m	1.70
GRC0759	EXPL	NE	114	131	17	230	1.69	GRC0759A: 17m at 1.69% Li2O from 114m	28.73
A GRC0759	EXPL	NE	148	166	18	230	1.24	GRC0759A: 18m at 1.24% Li2O from 148m	22.31
A GRC0760	EXPL	NE	155	182	27	240	1.70	GRC0760: 27m at 1.71% Li2O from 155m	45.94
GRC0761	EXPL	NE	142	145	3	300	0.90	GRC0761: 3m at 0.9% Li2O from 142m	2.69
GRC0761	EXPL	NE	233	239	6	300	1.30	GRC0761: 6m at 1.31% Li2O from 233m	7.82
GRC0762	EXPL	NE	81	88	7	223	1.88	GRC0762: 7m at 1.88% Li2O from 81m	13.1
GRC0762	EXPL	NE	177	182	5	223	1.58	GRC0762: 5m at 1.58% Li2O from 177m	7.8
GRC0762	EXPL	NE .	185	188	3	223	1.67	GRC0762: 3m at 1.67% Li2O from 185m	5.0:

Registered Address Level 33, Australia Square, 264 George Street, Sydney NSW 2000

Contact

T: +61 2 8072 0640

E: info@atlanticlithium.com.au W: www.atlanticlithium.com.au

	89	270	1.25	GRC0763: 26m at 1.26% Li2O from 163m		32.50
	93	. 270	1.65	GRC0763: 1m at 1.65% Li2O from 192m		1.6
	31	70			weathered pegmatite	
	42	60		no significant intersections	weathered pegmatite	
	48	205	1.41	GRC0766: 2m at 1.41% Li2O from 146m	peginative	2.8
	82	100			weathered pegmatite	
	39	100		no significant intersections	weathered pegmatite	
	60	. 100		no significant intersections	weathered pegmatite	
	97	119	0.96	GRC0769: 46m at 0.96% Li2O from 51m		44.1
	61	180			weathered pegmatite	
	50	. 180		no significant intersections		
	82	170			weathered pegmatite	
	83	220	0.95	GRC0772: 2m at 0.95% Li2O from 181m		1.9
	43	60	0.45		weathered pegmatite	0.8
	73	100			weathered pegmatite	
	92	150	1.85	GRC0775: 20m at 1.85% Li20 from 72m		37.0
	30	150	1.91	GRC0775: 13m at 1.91% Li2O from 117m		24.8
	00	260	1.95	GRC0776: 10m at 1.96% Li2O from 190m		19.5
	32	180	1.42	GRC0777: 24m at 1.43% Li2O from 108m		34.1
	54	180	1.89	GRC0777: 14m at 1.89% Li2O from 140m		26.4
	40	60			weathered pegmatite	
	51	272	1.43	GRC0779: 14m at 1.43% Li2O from 137m		19.9
	57	. 85	2.04	GRC0780: 2m at 2.04% Li2O from 55m		4.0
	88	110	1.74	GRC0781: 8m at 1.75% Li2O from 80m		13.9
	59	102			weathered pegmatite	
	74	102		no significant intersections		
	80	. 102		no significant intersections		
	85	102		no significant intersections		
	71	. 100	0.66	GRC0783: 1m at 0.66% Li2O from 70m		0.6
	53	76	0.64	GRC0784: 2m at 0.64% Li2O from 51m		1.2
	46	190	1.48	GRC0785: 35m at 1.48% Li2O from 111m		51.6
	72	100	1.18	GRC0786: 2m at 1.18% Li2O from 70m	-	2.3
	94	114		no significant intersections	100	
		80	10.50	no pegmatite intercepted		11.
1		120	1 4 1 4	no pegmatite intercepted		Garage.
1 1	32	. 190		no significant intersections	11.7	
civ.	34	190		no significant intersections		*
444	54	190	A	no significant intersections		- 1

Registered Address Level 33, Australia Square, 264 George Street, Sydney NSW 2000

Contact

T: +61 2 8072 0640

E: info@atlanticlithium.com.au W: www.atlanticlithium.com.au

GRC0791	EXPL	KPKN	108	109	1	132	1.75	GRC0791: 1m at 1.75% Li2O from 108m		1.75
GRC0792	EXPL	KPKN				170		no pegmatite intercepted		
GRC0793	EXPL	NE	200	205	5	280	1.29	GRC0793: 5m at 1.29% Li2O from 200m		6.43
GRC0794	EXPL	KPKN				108		no pegmatite intercepted		
GRC0795	EXPL	KPKN				90		no pegmatite intercepted		
GRC0796	EXPL	Main	237	248	11	300	1.32	GRC0796: 11m at 1.33% Li2O from 237m		14.53
GRC0797	EXPL	NE				350		no pegmatite intercepted		
GRC0798	EXPL	Main	243	248	5	322	1.13	GRC0798: 5m at 1.13% Li2O from 243m		5.64
GRC0798	EXPL	Main	254	267	13	322	1.16	GRC0798: 13m at 1.17% Li2O from 254m		15.09
GRC0799	EXPL	NE	182	194	12	210	0.99	GRC0799: 12m at 1% Li2O from 182m		11.92
GRC0800	EXPL	Main	263	286	23	347	1.00	GRC0800: 23m at 1.01% Li20 from 263m		23.01
GRC0800	EXPL	Main	294	296	2	347	1.21	GRC0800: 2m at 1.21% Li20 from 294m		2.41
GRC0801	EXPL	Main	246	255	9	363		no significant intersections		
GRC0801	EXPL	Main	341	349	8	363		no significant intersections		
GRC0802	EXPL	Main	212	219	7	350	0.90	GRC0802: 7m at 0.9% Li2O from 212m		6.28
GRC0803	EXPL	KPKN	34	37	3	100	0.95	GRC0803: 3m at 0.95% Li2O from 34m		2.84
GRC0803	EXPL	KPKN	40	45	5	100	0.92	GRC0803: 5m at 0.92% Li2O from 40m		4.58
GRC0804	EXPL	Main	2	12	10	386		no significant intersections	weathered	
GRC0804	EXPL	Main	351	368	17	386		no significant intersections	pegmatite	
GRC0804	EXPL	Main	379	380	1	386		no significant intersections		
GRC0804	EXPL	Main	385	386	1	386		no significant intersections		
GRC0805	EXPL	KPKN	72	79	7	119	1.26	GRC0805: 7m at 1.26% Li20 from 72m		8.80
GRC0806	EXPL	KPKN	27	34	7	120		no significant intersections	weathered pegmatite	
GRC0806	EXPL	KPKN	52	54	2	120		no significant intersections	p - g · · · · · · · · ·	
GRC0807	EXPL	KPKN	51	56	5	110	0.83	GRC0807: 5m at 0.83% Li2O from 51m		4.13
GRC0807	EXPL	KPKN	60	61	1	110	0.40	GRC0807: 1m at 0.4% Li2O from 60m		0.40
GRC0808	EXPL	KPKN	36	42	6	80		no significant intersections	weathered pegmatite	
GRC0809	EXPL	Main	256	266	10	340	0.91	GRC0809: 10m at 0.92% Li2O from 256m		9.14
GRC0810	EXPL	KPKN	67	68	1	110	1.01	GRC0810: 1m at 1.01% Li2O from 67m		1.01

Appendix 2 – Newly reported drill collar locations (MEA = Measured, IND = Indicated, EXPL = Exploration)

Hole_ID	hole target	Deposit	Hole depth m	Eastings	Northings	Elevation m	Dip	Hole Azimuth
GRC0755	EXPL	GrassW	241	716054	580209	42	-60	210
GRC0757	EXPL	NE	230	716406	579366	36	-50	210
GRC0758	EXPL	GrassW	250	716002	580199	41	-60	210
GRC0759A	EXPL	NE	230	716360	579371	37	-50	210
GRC0760	EXPL	NE	240	716321	579386	36	-50	210
GRC0761	EXPL	NE	300	716297	579415	14	-50	210
GRC0762	EXPL	NE	223	716215	579373	16	-60	210
GRC0763	EXPL	NE	270	716255	579435	14	-50	210
GRC0764	EXPL	KPKW	70	714959	581026	47	-50	150
GRC0765	EXPL	KPKW	60	714987	581055	62	-50	150
GRC0766	EXPL	NE	205	716446	579358	15	-50	210
GRC0767	EXPL	KPKW	100	714967	581093	64	-50	150
GRC0769	EXPL	KPKW	119	715040	581124	48	-50	150
GRC0770	EXPL	KPKW	180	715022	581155	56	-50	150
GRC0771	EXPL	KPKW	170	715044	581201	65	-50	150
GRC0772	EXPL	NE	220	716202	579483	14	-50	210
GRC0775	EXPL	KPKW	150	715093	581189	64	-50	150
GRC0776	EXPL	NE	260	716203	579483	14	-60	210
GRC0777	EXPL	KPKW	180	715076	581223	64	-50	150
GRC0778	EXPL	KPKW	60	715206	581153	46	-50	150
GRC0779	EXPL	NE	272	716212	579441	14	-50	210
GRC0782	EXPL	KPKW	102	714975	580917	45	-50	150
GRC0783	EXPL	KPKW	100	714958	580951	45	-50	150
GRC0784	EXPL	KPKW	76	715135	580957	46	-50	150
GRC0785	EXPL	NE	190	716128	579453	14	-60	210
GRC0786	EXPL	KPKW	100	715119	580992	52	-50	150
GRC0787	EXPL	KPKW	114	714997	581189	65	-50	150
GRC0788	EXPL	KPKN	80	715364	581202	43	-50	150
GRC0789	EXPL	KPKN	120	715426	581333	34	-50	150
GRC0790	EXPL	NE	190	716129	579454	14	-70	210
GRC0791	EXPL	KPKN	132	715371	581507	43	-50	150
GRC0792	EXPL	KPKN	170	715451	581365	31	-50	330
GRC0793	EXPL	NE	280	716135	579538	15	-50	210
GRC0794	EXPL	KPKN	108	715438	581547	34	-50	150
GRC0795	EXPL	KPKN	90	715556	581592	25	-50	150
GRC0796	EXPL	Main	300	715840	579432	16	-60	305
GRC0797	EXPL	NE	350	716260	579597	14	-50	210
GRC0798	EXPL	Main	322	715819	579398	16	-60	305
GRC0799	EXPL	NE	210	716133	579454	14	-80	210
GRC0800	EXPL	Main	347	715839	579484	16	-60	305

Atlantic Lithium Limited ACN 127 215 132 AIM: ALL, ASX: A11, OTC: ALLIF Registered Address Level 33, Australia Square, 264 George Street, Sydney NSW 2000 Contact

T: +61 2 8072 0640
E: info@atlanticlithium.com.au
W: www.atlanticlithium.com.au

GRC0801	EXPL	Main	363	715874	579461	15	-60	305
GRC0802	EXPL	Main	350	715846	579531	18	-60	305
GRC0803	EXPL	KPKN	100	715598	581517	37	-50	330
GRC0804	EXPL	Main	386	715878	579508	17	-60	305
GRC0805	EXPL	KPKN	119	715619	581479	45	-50	330
GRC0806	EXPL	KPKN	120	715663	581565	40	-50	330
GRC0807	EXPL	KPKN	110	715678	581531	40	-50	330
GRC0808	EXPL	KPKN	80	715486	581482	27	-50	330
GRC0809	EXPL	Main	340	715863	579414	15	-60	305
GRC0810	EXPL	KPKN	110	715501	581446	31	-50	330

'JORC Code 2012 Table 1' Section 1 Sampling Techniques and Data

The following extract from the JORC Code 2012 Table 1 is provided for compliance with the Code requirements for the reporting of Exploration Results.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC drill holes were routinely sampled at 1m intervals with a nominal 3-6kg sub-sample split off for assay using a rig-mounted cone splitter at 1m intervals. DD holes were quarter core sampled at 1m intervals or to geological contacts for geochemical analysis. For assaying, splits from all prospective ore zones (i.e., logged pegmatites +/- interburden) were sent for assay. Outside of these zones, the splits were composited to 4m using a portable riffle splitter. Holes without pegmatite were not assayed. Approximately 5% of all samples submitted were standards and coarse blanks. Blanks were typically inserted with the interpreted ore zones after the drilling was completed. Approximately 2.5% of samples submitted were duplicate samples collected after logging using a riffle splitter and sent to an umpire laboratory. This ensured zones of interest were duplicated and not missed during alternative routine splitting of the primary sample. Prior to the December 2018 - SGS Tarkwa was used for sample preparation (PRP100) and subsequently forwarded to SGS Johannesburg for analysis; and later SGS Vancouver for analysis (ICP90A). Post December 2018 to present – Intertek Tarkwa was used for sample preparation (SP02/SP12) and subsequently forwarded to Intertek Perth for analysis (FP6/MS/OES - 21 element combination Na₂O₂ fusion with combination OES/MS). ALS Laboratory in Brisbane was used for the Company's initial due diligence work programmes and was selected as the umpire laboratory since Phase 1. ALS conducts ME-ICP89, with a Sodium Peroxide Fusion. Detection limits for lithium are 0.01-10%. Sodium Peroxide fusion is considered a "total" assay technique for lithium. In addition, 22 additional elements assayed with Na₂O₂ fusion, and combination MS/ICP analysis.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Five phases of drilling were undertaken at the Project using RC and DD techniques. All the RC drilling used face sampling hammers. Phase 1 and 2 programmes used a 5.25-inch hammers while Phase 3 and 5 used a 5.75-inch hammer. All DD holes were completed using PQ and HQ core from surface (85mm and 63.5mm). All DD holes were drilled in conjunction with a Reflex ACT II tool; to provide an accurate determination of the bottom-of-hole orientation. All fresh core was orientated to allow for geological, structural and geotechnical logging by a Company geologist.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have 	A semi-quantitative estimate of sample recovery was completed for the vast majority of drilling. This involved weighing both the bulk samples and splits and calculating theoretical recoveries using assumed densities. Where samples were not weighed, qualitative descriptions of the sample size were

Atlantic Lithium Limited ACN 127 215 132 AIM: ALL, ASX: A11, OTC: ALLIF Registered Address Level 33, Australia Square, 264 George Street, Sydney NSW 2000 Contact
T: +61 2 8072 0640
E: info@atlanticlithium.com.au
W: www.atlanticlithium.com.au

cocured due to preferential isssigain of fine/coarse material. Cogging	Criteria	JORC Code explanation	Commentary
DD recoveries were measured and recorded. Recoveries in excess of 95.83 to been achieved for the DD drilling programme. Drill sample recovery and quality is adequate for the filling technique employed.		occurred due to preferential loss/gain of fine/coarse	recorded. Some sample loss was recorded in the
whether logging is qualitative or quantitative in nature. Care (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. It core intersections logged. If core, whether cut or sawn and whether quarter, half or all care taken. If core, whether cut or sawn and whether quarter, half or all care taken. If non-core, whether riffled, tube sampled, rolary split, etc and whether sampled well or div. If non-core, whether riffled, tube sampled, rolary split, etc and whether sampled well or div. If non-core, whether riffled, tube sampled, rolary split, etc and whether sampled well or div. If non-core, whether riffled, tube sampled, rolary split, etc and whether sampled well or div. If non-core, whether riffled, tube sampled, rolary split, etc and whether sampled well or div. If non-core, whether riffled, tube sampled, rolary split, etc and whether sampled well or div. If non-core, whether riffled, tube sampled, rolary split, etc and whether sampled well or div. If non-core, whether riffled, tube sampled, rolary split, etc and whether sampled well or div. If non-core, whether riffled, tube sampled, rolary split, etc and whether sampled well or div. If non-core, whether riffled, tube sampled, rolary split, etc and whether sampled well or div. If non-core, whether riffled, tube sampled, rolary split, etc and whether sampled well or div. If non-core, whether riffled, tube sampled, rolary split, etc and whether sampled well or div. If non-core, whether riffled, tube sampled, rolary split, etc and whether sampled well or div. If non-core, whether riffled, tube sampled, rolary split, etc and whether sampled well or div. If non-core, whether cut or sawn and whether quarter, half or all subsampling stages to maximise representative to the sample preparation technique. Quality control procedures adopted for all subsampling stages to makensial experimentally of the core including the bottom-of-hole orientation line, was retained for geological release. Whether s	Logging		Recoveries in excess of 95.8% have been achieved for the DD drilling programme. Drill sample recovery and quality is adequate for the drilling technique employed. The DD twin programme has identified a positive grade bias for iron in the RC compared to the DD results. All drill sample intervals were geologically logged by
If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Whether sample sizes are appropriate to the grain size of the material being sampled. Since December 2018, samples were submitted to Intertek Tarkwa (SP02/SP12) for sample preparation. Samples were weighed, dried and crushed to -Zmm in a Boyd crusher with an 800-1,200g rotary split, producing a nominal 1,500g split crushed sample, which was subsequently pulverised in a LM2 ring mill. Samples were pulverised to a nominal 85% passing 75μm. All the preparation equipment was flushed with barren material prior to the commencement of the job. Coarse reject material was kept in the original bag. Lab sizing analysis was undertaken on a nominal 1,125 basis. Final pulverised samples (20g) were airfreighted to Intertek in Perth for assaying. The pulps were submitted for analysis by Sodium peroxide fusion (Nickel crucibles) and Hydrochloric acid to dissolve the melt. Analysed by Inductively Coupled Plasma Mass Spectrometry (FP6/MS) / Emission Spectrometry (FP6/MS) / Emission Spectrometry (FP6/MS). The pulps were submitted for analysis by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry. The pulps were submitted for analysis by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry. The pulps were submitted for analysis by Inductivel		 appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant 	 Where appropriate, geological logging recorded the abundance of specific minerals, rock types and weathering using a standardised logging system that captured preliminary metallurgical domains. All logging is qualitative, except for the systematic collection of magnetic susceptibility data which could be considered semi quantitative. Strip logs have been generated for each drill hole to cross-check geochemical data with geological logging. A small sample of washed RC drill material was retained in chip trays for future reference and validation of geological logging, and sample reject materials from the laboratory are stored at the Company's field office. All drill holes have been logged and reviewed by Company technical staff. The logging is of sufficient detail to support the
If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/secondhalf sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Whether sample sizes are appropriate to the grain size of the material being sampled. Since December 2018, samples were submitted to Intertek Tarkwa (SP02/SP12) for sample preparation. Samples were weighed, dried and crushed to -2mm in a Boyd crusher with an 800-1,200g rotary split, producing a nominal 1,500g split crushed sample, which was subsequently pulverised in a LM2 ring mill. Samples were pulverised to a nominal 85% passing 75µm. All the preparation equipment was flushed with barren material prior to the commencement of the job. Coarse reject material was kept in the original bag. Lab sizing analysis was undertaken on a nominal 1:25 basis. Final pulverised samples (20g) were airfreighted to Intertek in Perth for assaying. The pulps were submitted for analysis by Sodium peroxide fusion (Nickel, crucibles) and Hydrochloric acid to dissolve the melt. Analysed by Inductively Coupled Plasma Mass. Spectrometry (FP6/OE). The analytical Emission Spectrometry (FP6/OE). The analytical	techniques and		RC samples were cone split at the drill rig. For interpreted waste zones the 1 or 2m rig splits were
Mn, Nb, P, Rb, S, Si, Sn, Sr, Ta and Ti.		 etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/secondhalf sampling. Whether sample sizes are appropriate to the grain size 	 composite samples. DD core was cut with a core saw and selected half core samples dispatched to Nagrom Laboratory in Perth for preliminary metallurgical test work. The other half of the core, including the bottom-ofhole orientation line, was retained for geological reference. The remaining DD core was quarter cored for geochemical analysis. Since December 2018, samples were submitted to Intertek Tarkwa (SP02/SP12) for sample preparation. Samples were weighed, dried and crushed to -2mm in a Boyd crusher with an 800-1,200g rotary split, producing a nominal 1,500g split crushed sample, which was subsequently pulverised in a LM2 ring mill. Samples were pulverised to a nominal 85% passing 75µm. All the preparation equipment was flushed with barren material prior to the commencement of the job. Coarse reject material was kept in the original bag. Lab sizing analysis was undertaken on a nominal 1:25 basis. Final pulverised samples (20g) were airfreighted to Intertek in Perth for assaying. The pulps were submitted for analysis by Sodium peroxide fusion (Nickel crucibles) and Hydrochloric acid to dissolve the melt. Analysed by Inductively Coupled Plasma Mass Spectrometry (FP6MS) / Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry (FP6/OE). The analytical suite consisted of Al, B, Ba, Be, Ca, Cs, Fe, K, Li, Mg,

Registered Address Level 33, Australia Square, 264 George Street, Sydney NSW 2000

Contact

T: +61 2 8072 0640 E: info@atlanticlithium.com.au

W: www.atlanticlithium.com.au

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining 	Phase 1 drilling was undertaken at SGS Johannesburg / Vancouver by ICP-OES after Sodium Peroxide Fusion. Detection limits for lithium
	the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 considered a "total" assay technique for lithium. Review of standards and blanks from the initial submission to Johannesburg identified failures (multiple standards reporting outside control limits). A decision was made to resubmit this batch and all
		 results demonstrating good repeatability. ALL's review of QAQC suggests the SGS Vancouver and Intertek Perth laboratories performed within acceptable limits. No geophysical methods or hand-held XRF units have been used for determination of grades in the Mineral Resource.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	company geologists and Shaun Searle of Ashmore during the 2019 site visit. • Drill hole data was compiled and digitally captured by Company geologists in the field. Where hand-written information was recorded, all hardcopy records were kept and archived after digitising. • Phase 1 and 2 drilling programmes were captured on paper or locked excel templates and migrated to an MS Access database and then into Datashed (industry standard drill hole database management)
		software). The Phase 3 to 5 programmes were captured using LogChief which has inbuilt data validation protocols. All analytical results were transferred digitally and loaded into the database by a Datashed consultant. The data was audited, and any discrepancies checked by the Company personnel before being updated in the database. Twin DD holes were drilled to verify results of the RC drilling programmes. Results indicate that there is iron contamination in the RC drilling process. Reported drill hole intercepts were compiled by the Chief Geologist. Adjustments to the original assay data included
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. 	 converting Li ppm to Li₂O%. The collar locations were surveyed in WGS84 Zone 30 North using DGPS survey equipment, which is

Registered Address Level 33, Australia Square, 264 George Street, Sydney NSW 2000

Contact T: +61 2 8072 0640 E: info@atlanticlithium.com.au

W: www.atlanticlithium.com.au

Criteria	JORC Code explanation	Commentary
	Quality and adequacy of topographic control.	 surveyors. Once validated, the survey data was uploaded into Datashed. RC drill holes were routinely down hole surveyed every 6m using a combination of EZ TRAC 1.5 (single shot) and Reflex Gyroscopic tools. After the tenth drill hole, the survey method was changed to Reflex Gyro survey with 6m down hole data points measured during an end-of-hole survey. All Phase 2 and 3 drill holes were surveyed initially using the Reflex Gyro tool, but later using the more efficient Reflex SPRINT tool. Phase 4 and 5 drill holes were surveyed using a Reflex SPRINT tool. LiDAR survey Southern Mapping to produce rectified colour images and a digital terrain model (DTM) 32km2, Aircraft C206 aircraft-mounted LiDAR Riegl Q780 Camera Hasselblad H5Dc with 50mm Fixfocus lens. Coordinate system: WGS84 UTM30N with accuracy to ±0.04. The topographic survey and photo mosaic output from the survey is accurate to 20mm. Locational accuracy at collar and down the drill hole is considered appropriate for resource estimation purposes.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 The RC holes were initially drilled on 100m spaced sections and 50m hole spacings orientated at 300° or 330° with dips ranging from -50° to -60°. Planned hole orientations/dips were occasionally adjusted due to pad and/or access constraints. Hole spacing was reduced to predominantly 40m spaced sections and 40m hole spacings. Holes are generally angled perpendicular to interpreted mineralisation orientations at the Project. Samples were composited to 1m intervals prior to estimation.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The drill line and drill hole orientation are oriented as close as practicable to perpendicular to the orientation of the general mineralised orientation. Most of the drilling intersects the mineralisation at close to 90 degrees ensuring intersections are representative of true widths. It is possible that new geological interpretations and/or infill drilling requirements may result in changes to drill orientations on future programmes. No orientation based sampling bias has been identified in the data.
Sample security	The measures taken to ensure sample security.	Samples were stored on site prior to road transportation by Company personnel to the SGS preparation laboratory. With the change of laboratory to Intertek, samples were picked up by the contractor and transported to the sample preparation facility in Tarkwa.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Prior to the drilling programme, a third-party Project review was completed by an independent consultant experienced with the style of mineralisation. In addition, Shaun Searle of Ashmore reviewed drilling and sampling procedures during the 2019 site visit and found that all procedures and practices conform to industry standards.

~end~