THIS ANNOUNCEMENT CONTAINS INSIDE INFORMATION FOR THE PURPOSES OF ARTICLE 7 OF REGULATION 2014/596/EU WHICH IS PART OF DOMESTIC UK LAW PURSUANT TO THE MARKET ABUSE (AMENDMENT) (EU EXIT) REGULATIONS (SI 2019/310) ("UK MAR"). UPON THE PUBLICATION OF THIS ANNOUNCEMENT, THIS INSIDE INFORMATION (AS DEFINED IN UK MAR) IS NOW CONSIDERED TO BE IN THE PUBLIC DOMAIN.

NOT FOR RELEASE, PUBLICATION OR DISTRIBUTION, IN WHOLE OR IN PART, DIRECTLY OR INDIRECTLY IN OR INTO THE UNITED STATES, AUSTRALIA, CANADA, JAPAN, THE REPUBLIC OF SOUTH AFRICA OR ANY OTHER JURISDICTION WHERE TO DO SO WOULD CONSTITUTE A VIOLATION OF THE RELEVANT LAWS OF SUCH JURISDICTION.

7 February 2022

Cobra Resources plc

("Cobra" or the "Company")

Wudinna Project Update

Northern Drillholes at Clarke Intercept Additional Gold Mineralisation

Additional Rare Earth Interceptions Directly Above Gold Zones

Cobra, a gold exploration company focused on the Wudinna Gold Project in South Australia, announces additional results from the Company's recent 14-hole phase of Reverse Circulation ("RC") drilling on the Clarke prospect. The Company is pleased to report:

- Further gold mineralisation has been intercepted within the northern drill transect confirming the potential for a significant gold mineral system at Clarke
- Additional Rare Earth Elements ("REE") have been intercepted above and proximal to gold interceptions. The Board considers the discovery of critical REEs overlaying gold mineralisation to be significant, with grades and intercept widths (summarised further below) comparable to other rare earth projects of considerable market value. This discovery now exposes Cobra to multiple high value commodities

Fire assay results for gold have now been received for all holes in the recent phase of drilling on the Clarke prospect, multi-element and rare earth results are outstanding for a single hole.

Rupert Verco, CEO of Cobra, commented:

"The results of the programme have demonstrated that the gold system at Clarke is considerable in size, open to the north and continues to present as a compelling target to add further ounces to the existing Mineral Resource Estimate.

The rare earth discovery is also proving to be significant. The occurrence of rare earths above defined gold mineralisation makes the discovery unique when compared to other rare earth projects. We have work to do to define the extent of this discovery and to understand its potential to contribute to future

project economics, but undoubtedly this has added a new and very interesting dimension to Cobra's potential.

There is a growing demand for magnet rare earths and an upward forecast in pricing. A vertically associated gold and clay hosted rare earth deposit offers shareholders exposure to multiple high value and high demand commodities in close spatial proximity. We look forward to growing a mineral resource that places Cobra in an exclusive position within the mineral resource sector.

We are in the process of interpreting results and finalising our planned 2022 work programme that will focus on increasing our current gold resource, increasing the footprint of rare earth mineralisation, and drill testing our IOCG targets."

A presentation of results from the 2021 drilling programme of the Clarke prospect with management commentary is available to view on the Company's website at www.cobraplc.com/category/presentations/.

Highlights:

- CBRC0050 intercepted 33m at 1.03 g/t gold from 65m, including 9m at 2.09 g/t gold from 65m¹
- Gold mineralisation has now been intercepted over 400m of strike at Clarke with mineralisation open to the northwest of CBRC0050
- All holes intercepted rare earth mineralisation within the saprolite zone, where:
 - The average true width of mineralisation is 18.7m and the average Total Rare Earth Oxides ("TREO") is 597 ppm²
 - O High-grade intervals exist within the intercepts, where drillhole CBRC0044 intercepted a true width of 9.4m at 1,030 ppm TREO, CBRC0043 intercepted a true width of 4.7m at 1,160 ppm TREO and CBRC0054 intercepted 6m at 1,446 ppm TREO
 - The highest 1m intercept grade was 9,024 ppm TREO in CBRC0048
 - o Intercepts are enriched in high value rare earths where neodymium/ praseodymium equate to 21.5% of the TREO and dysprosium equates to 2.2%
- Rare earth mineralisation intercepts are low in uranium (6 ppm average) and thorium (28 ppm average), a favourable attribute of Ion Adsorbed Clay ("IAC") rare earth deposits
- Results support the likelihood of rare earths overlaying gold mineralisation at Barns and Baggy Green as well
- Preliminary results from X-ray diffraction ("XRD") performed by the Commonwealth Scientific and Industrial Research Organisation ("CSIRO") demonstrates that mineralisation is supportive of REEs being adsorbed to clay mineralogy

The discovery of critical REEs overlaying gold mineralisation at Clarke is significant, with grades and intercept widths comparable to other IAC hosted rare earth projects of considerable market value

- Rare earth mineralisation is open to the north, south, east, and west of current drilling
- REE intercepts confirmed above previously reported gold intercepts³, including:
 - CBRC0042 intercepted 8.2m at 561 ppm TREO from 38.1m below surface, which is above the previously reported 19m at 0.79 g/t gold from 83m, including 5m at 2.62 g/t gold from 95m
 - CBRC0043 intercepted 19.7m at 569 ppm TREO from 31m below surface, including 4.7m at 1,160 ppm TREO from 38.5m below surface. This is in association with the 96m at 0.55 g/t gold from 30m, including 20m at 1.5 g/t gold from 88m
 - CBRC0044 intercepted 19.7m at 717 ppm TREO from 31m, including 9.4m at 1030 ppm TREO from 33m
 - CBRC0050 intercepted 4.7m at 380 ppm TREO from 15m and 3.8m at 456 ppm TREO from 48m below surface. This is above the 33m at 1.03 g/t gold from 65m, including 9m at 2.09 g/t
- Additional rare earth results proximal to gold mineralisation at Clarke include:
 - CBRC0046 intercepted 40.4m at 669 ppm TREO from 19.7m, including 14.1m at 852 ppm TREO from 19.7m and 9.4m at 830 ppm TREO from 47.9m
 - O CBRC0048 intercepted 34.8m at 629 ppm TREO from 18.8m, including 0.9m at 9,024 ppm TREO
 - CBRC0045 intercepted 22.6m at 638 ppm TREO from 31m, including 2.8m at 993 ppm TREO, 1.9m at 1,972 ppm TREO and 2.8m at 1,053 ppm TREO
 - O CBRC0047 intercepted 9.4m at 682 ppm TREO from 18.8m, including 2.8m at 1,322 ppm TREO
 - O CBRC0051 intercepted 7.5m at 783 ppm TREO from 14.1m, including 1.9m at 1,447 ppm TREO
 - O CBRC0052 intercepted 22.6m at 435 ppm TREO from 16.9m below surface
 - CBRC0054 intercepted 16m at 920 ppm TREO from 16.9m below surface, including 5.6m at 1,446 ppm TREO

Enquiries:

Cobra Resources plcvia Vigo ConsultingRupert Verco (Australia)+44 (0)20 7390 0234Dan Maling (UK)+44 (0)20 7390 0234

SI Capital Limited (Joint Broker) +44 (0)1483 413 500

Nick Emerson Sam Lomanto

Peterhouse Capital Limited (Joint Broker) +44 (0)20 7469 0932

Duncan Vasey Lucy Williams

Vigo Consulting (Financial Public Relations) +44 (0)20 7390 0234

Ben Simons Charlie Neish Kendall Hill

The person who arranged for the release of this announcement was Rupert Verco, CEO of the Company.

About Cobra

Cobra's Wudinna Gold Project is located in the Gawler Craton which is home to some of the largest IOCG discoveries in Australia including Olympic Dam, as well as Prominent Hill and Carrapateena. Cobra's Wudinna tenements contain extensive orogenic gold mineralisation and are characterised by potentially open-pitable, high-grade gold intersections, with ready access to nearby infrastructure. In total Cobra has over 22 orogenic gold prospects, with grades of between 16 g/t up to 37.4 g/t gold outside of the current 211,000 oz JORC Mineral Resource Estimate, as well as one copper-gold prospect, and five IOCG targets.

Wudinna Project Description

The Eyre Peninsula Gold Joint Venture comprises a 1,928 km² land holding in the Gawler Craton. The Wudinna Gold Project within the Joint Venture tenement holding comprises a cluster of gold prospects which includes the Barns, White Tank and Baggy Green deposits.

Competent Persons Statement

Information and data presented within this announcement has been compiled by Mr Robert Blythman, a Member of the Australian Institute of Geoscientists ("MAIG"). Mr Blythman is a Consultant to Cobra Resources Plc and has sufficient experience, which is relevant to the style of mineralisation, deposit type and to the activity which he is undertaking to qualify as a Competent Person defined by the 2012 Edition of the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves (the "JORC" Code). This includes 10 years of Mining, Resource Estimation and Exploration relevant to the style of mineralisation.

¹ Gold results reported as downhole intercepts

² Reported using Datamine true width calculator

³ Rare earth results reported as true width intercepts

Information in this announcement has been assessed by Mr Rupert Verco, a Fellow of the Australasian Institute of Mining and Metallurgy ("FAusIMM"). Mr Verco an employee of Cobra Resources Plc has more than 15 years relevant industry experience, which is relevant to the style of mineralisation, deposit type and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves (the "JORC" Code). This includes 10 years of Mining, Resource Estimation and Exploration relevant to the style of mineralisation.

Information in this announcement relates to exploration results that have been reported in the following announcements:

Further information on the Clarke drilling programme

The Clarke gold and REE prospect is located 1.75 km north of the 94,000 oz Baggy Green deposit that forms part of the Wudinna Project's 211,000 oz Mineral Resource Estimate. In Cobra Resources' maiden 2020 drilling programme, drilling intercepted 31m at 3.06 g/t to the north of previously intercepted gold mineralisation at the Clarke prospect.

Follow-up pathfinder drilling in 2021 defined a zone of anomalous gold and associated pathfinder elements across a 1.1 km zone at Clarke. In November 2021, the Company completed a 14-hole (2,144m) RC programme that was designed to test the extent of the anomaly and the northern continuity of previously defined gold mineralisation.

Re-analysis of samples from drillhole CBRC0009 confirmed the presence of elevated rare earths within the weathered kaolinised clays that lie directly above intercepted gold mineralisation. This confirmed the requirement to perform additional rare earth analysis within the weathered saprolite zone.

Significant intercepts from the programme include:

Table 1: Significant gold intercepts form the 2021 exploration programme, reported as downhole intercepts

Hole ID	From	То	Interval	Au (g/t)	Including
CBRC0050	65	98	33	1.03	Including 9m @ 2.09 g/t Au [65-75m]
					Including 8m at 0.61 g/t Au [32-40m]
CBRC0043	30	126	96	0.55	Including 20m at 1.5 g/t Au [88-108m]
					Including 10m at 0.92 g/t Au [114-124m]
CBRC0042	83	102	19	0.79	Including 5m at 2.65 g/t Au [83-87m]
CBRC0044	109	118	9	0.23	

Table 2: Significant rare earth oxide intercepts, reported as downhole and true width

Hala ID	DH	DH	DH	Depth	True	TREO	Praseodymium	Neodymium Nd2O3	Terbium	Dysprosium
Hole ID	(m)	(m)	(m)	Surface	(m)	(ppm)	Pr6O11	Nd2O3	Tb407	Dv2O3

[&]quot;Wudinna Project Update - Initial Gold and Rare Earth Results", dated 14 December 2021

[&]quot;Wudinna Project Update – Clarke Gold Assay Results", dated 3 December 2020

							ppm	% TREO	ppm	% TREO	ppm	% TREO	ppm	% TREO
CBRC0042	42	51	9	38.1	8.2	561	25	4.4%	92	16.4%	2	0.3%	10	1.8%
CBRC0043	35	54	19	32.9	17.9	603	30	4.9%	107	17.7%	2	0.4%	14	2.4%
Inc	41	46	5	38.5	4.7	1,296	76	5.9%	277	21.4%	6	0.5%	35	2.7%
CBRC0044	33	54	21	31.0	19.7	717	35	4.9%	129	18.0%	3	0.4%	16	2.3%
Inc	35	45	10	32.9	9.4	1030	56	5.4%	202	19.7%	4	0.4%	25	2.4%
CBRC0045	33	57	24	31.0	22.6	638	25	3.9%	95	14.9%	3	0.4%	16	2.6%
Inc	33	36	3	31.0	2.8	993	33	3.4%	125	12.5%	3	0.3%	16	1.6%
Inc	39	41	2	36.6	1.9	1972	108	5.5%	400	20.3%	10	0.5%	51	2.6%
Inc	54	57	3	50.7	2.8	1053	26	2.5%	114	10.9%	6	0.6%	43	4.1%
CBRC0046	21	64	43	19.7	40.4	669	31	4.7%	113	16.9%	2	0.3%	13	2.0%
Inc	21	36	15	19.7	14.1	852	45	5.2%	160	18.8%	3	0.3%	16	1.9%
Inc	51	61	10	47.9	9.4	830	34	4.0%	124	15.0%	3	0.3%	16	2.0%
CBRC0047	20	30	10	18.8	9.4	682	36	5.2%	127	18.6%	3	0.4%	17	2.5%
Inc	25	28	3	23.5	2.8	1322	68	5.2%	246	18.6%	6	0.5%	37	2.8%
CBRC0048	20	57	37	18.8	34.8	629	35	5.6%	120	19.1%	3	0.5%	17	2.7%
Inc	20	21	1	18.8	0.9	9024	688	7.6%	2293	25.4%	52	0.6%	277	3.1%
CBRC0049	17	27	10	16.0	9.4	513	23	4.5%	83	16.2%	2	0.4%	12	2.3%
CBRC0050	16	21	5	15.0	4.7	380	16	4.2%	57	14.9%	1	0.3%	6	1.6%
CBRC0050	51	55	4	47.9	3.8	456	20	4.4%	71	15.6%	1	0.3%	7	1.5%
CBRC0051	15	23	8	14.1	7.5	783.2	35	4.4%	117	15.0%	3	0.3%	15	2.0%
Inc	19	21	2	17.9	1.9	1447	61	4.2%	207	14.3%	5	0.3%	29	2.0%
CBRC0052	18	42	24	16.9	22.6	435.2	18	4.1%	65	15.0%	2	0.4%	9	2.2%
CBRC0053	13	25	12	11.8	10.9	413	19	4.5%	67	16.2%	1	0.3%	7	1.7%
CBRC0054	18	35	17	16.9	16.0	920.1	40	4.4%	139	15.1%	3	0.3%	15	1.7%
Inc	22	28	6	20.7	5.6	1446	67	4.7%	238	16.5%	5	0.3%	26	1.8%
CBRC0009 ¹	30	50	20	29.5	19.7	550	28	5.0%	101	18.3%	2	0.4%	13	2.3%
Inc	31	39	8	30.5	7.9	875	48	5.5%	176	20.1%	4	0.4%	21	2.4%

 $^{^{\}mathrm{1}}$ Drilled in 2020, re-analysed for REEs and reported in Dec 2021

Results of the programme demonstrate:

- The strike of gold mineralisation at Clarke has been doubled, where the extent of mineralisation now exceeds 400m
- Mineralisation is open to the northeast of drillhole CBRC0050 that intersected 33m at 1.03 g/t
- The depth of gold mineralisation remains untested and is open with depth
- The discontinuity of mineralisation across the central transect is interpreted to be attributed to a late-stage E-W fault. The presence of which has been supported by several geological indicators (refer to figure 1)
- HyLogger data demonstrates critical changes in mineralogical composition associated with gold mineralisation that are considered critical for future exploration targeting

- Rare earth minerals are accumulated within the kaolinised clays of the saprolite (weathered)
 horizon. The intercept widths and grades are comparable to other IAC projects and are
 considered economically beneficial to the Wudinna project
- The Clarke drilling programme is the first that has identified rare earth mineralisation, the potential extent of rare earths is potentially significant due to:
 - The margin settings of enriched Hiltaba Suite and Sleaford Complex granites are present throughout the project's land tenure
 - The depth extent of basement weathering, where kaolinised profiles of up to 60m present as highly favourable zones to host IAC style rare earth mineralisation
- Elevated rare earth grades have a spatial association to gold mineralisation at Clarke and the saprolite weathering profile at Clarke exhibits geological similarities to the saprolite horizons at Baggy Green and Barns. Re-analysis of retained drillhole pulp samples presents as a low-cost exploration opportunity to define further rare earth mineralisation

The proximity of rare earths to gold mineralisation is unique, the complementary nature of both forms of mineralisation has the potential for favourable economics: there are currently no IAC rare earth operating mines in Australia, and no IAC rare earth projects with associated gold mineralisation

 Rare earth mineralisation is open in all directions and the continuity and consistency of rare earth mineralisation means that there is a significant opportunity to increase the extent of the current mineralisation footprint

Rare earth results remain outstanding for hole CBRC0055. These results are expected within two weeks. Results have been delayed due to the current Covid-19 situation in South Australia.

Table 3: Drillhole collar details for all drillholes reported and results that remain outstanding

Hole ID	Facting	Northing	DI	Depth Dip Azi		Azimuth	A	ssays Received/	Reported
Hole ID	Easting	Northing	RL	Depth	DIP	Azimuth	Au	Multi Element	Lanthanide
CBRC0009	547,047	6,364,928	105.9	123	-80	180	Р	Р	Р
CBRC0042	546,945	6,364,933	105.6	162	-65	60	Р	Υ	Y
CBRC0043	547,065	6,364,940	105.6	126	-70	240	Р	Υ	Υ
CBRC0044	547,107	6,364,965	104.9	190	-70	240	Р	Υ	Υ
CBRC0045	547,151	6,364,992	104.7	138	-70	240	Р	Υ	Υ
CBRC0046	546,903	6,364,963	104.8	156	-70	240	Р	Υ	Υ
CBRC0047	546,993	6,365,014	106.2	138	-70	240	Υ	Υ	Υ
CBRC0048	547,025	6,365,037	106.1	144	-70	240	Υ	Υ	Υ
CBRC0049	547,080	6,365,065	104.3	144	-70	240	Υ	Υ	Y
CBRC0050	546,942	6,365,104	104.1	156	-70	240	Υ	Υ	Υ
CBRC0051	546,985	6,365,128	104.3	156	-70	240	Υ	Υ	Υ

CBRC0052	547,028	6,365,152	105.2	160	-70	240	Υ	Υ	Υ
CBRC0053	546,906	6,364,667	107.1	150	-65	240	Υ	Υ	Υ
CBRC0054	547,356	6,364,707	109.6	162	-70	240	Υ	Υ	Υ
CBRC0055	547,311	6,364,682	108.4	162	-65	240	Υ	Х	Х

P – Previously reported, Y - Received, X - Assays outstanding

HyLogger Analysis

Preliminary results from the South Australian Department of Mining HyLogger analysis of drill chips have defined key alteration assemblages. Results demonstrate chemical changes within key alteration mineral assemblages directly associated with gold mineralisation that have previously been unidentified. This is considered critical in understanding the nature of mineralisation and will improve exploration targeting moving forward and enable the development of robust geological models.

CSIRO Analysis

Preliminary XRD analyses from the CSIRO - Mineral Resources, supports that a considerable portion of REOs are adsorbed to clay particles. This is from XRD analyses of sieved samples >2 μ m (microns) and <2 μ m, where:

- Phosphorus pentoxide concentrations remained equal in both size fractions (a compounding XRD analysis demonstrating negligible change in florencite and monazite concentrations)
- \circ The concentration of REEs effectively doubled in the fine (<2 μ m) fraction, indicating that REE bursary may be adsorbed to clay mineralogy

Next Steps

Analysis of HyLogger data and multi-element chemistry is underway to validate the structural interpretation of the gold mineralisation at Clarke. Pending findings, the decision to estimate a maiden gold mineral resource estimate at Clarke before further drilling will be evaluated from the increased geological understanding.

Further samples are at the CSIRO laboratories, Adelaide, to increase the dataset and confirm the mineralogy of rare earths. Once these results are received further testwork will commence to define the metallurgical leachability.

Work is underway to identify samples from historic drillholes for re-analysis that will focus on growing the footprint of rare earth mineralisation across existing gold resources at Barns, White Tank and Baggy Green.

Further detail regarding the Company's planned 2022 exploration works programme will be made available in the coming weeks.

Figure 1: Plan view of Clarke 2021 RC drilling programme – results plotted over Total Magnetic Intensity ("TMI")

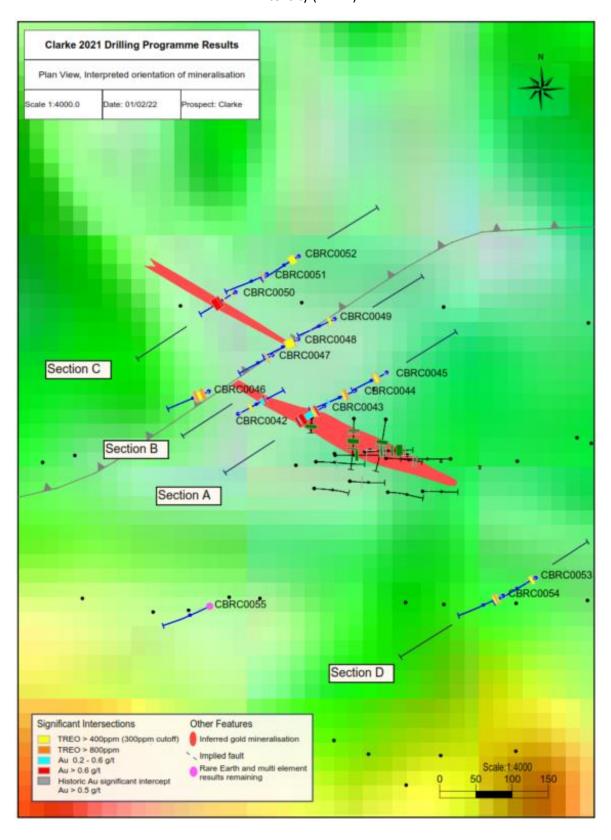
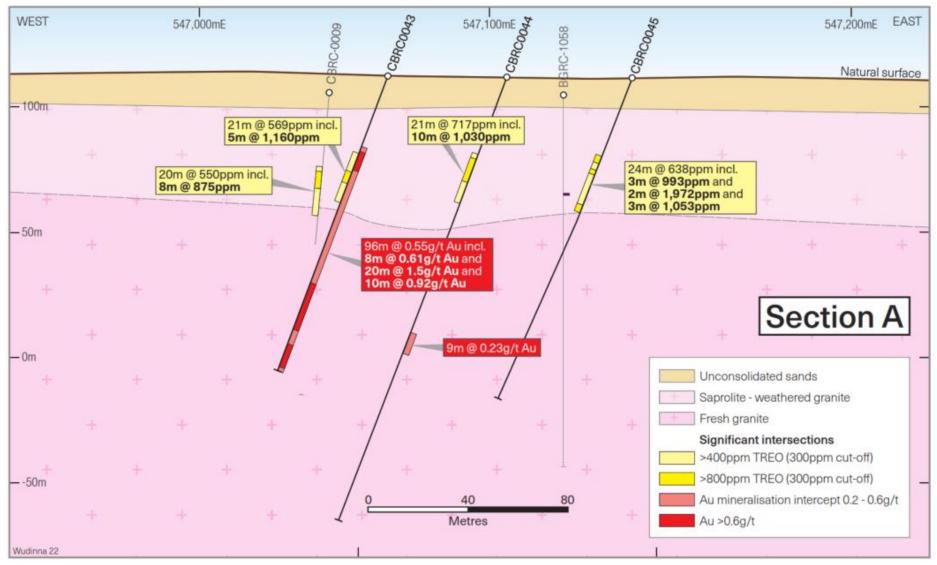



Figure 2: Section A – significant intercepts of holes CBRC0043–CBRC0045, all results presented as downhole (CBRC009 Au intersection is outside section).

547,000mE 2800,745 547,100mE 6 WEST EAST 546,900mE Natural surface - 100m 10m @ 682ppm incl. 3m @ 1,322ppm 10m @ 513ppm 43m @ 669ppm incl. 15m @ 852ppm and 10m @ 830ppm 37m @ 625ppm incl. 1m @ 9,024ppm 9m @ 561ppm -50m → 19m @ 0.79g/t Au incl. 5m @ 2.65g/t Au Section B - Om Unconsolidated sands Saprolite - weathered granite Fresh granite Significant intersections >400ppm TREO (300ppm cut-off) >800ppm TREO (300ppm cut-off) --50m Au mineralisation intercept 0.2 - 0.6g/t Metres Au >0.6g/t Wudinna 23

Figure 3: Section B – significant intercepts of holes CBRC0043–CBRC0045, all results presented as downhole

Figure 4: Section C – significant intercepts of holes CBRC0050–CBRC0053, all results presented as downhole intercepts

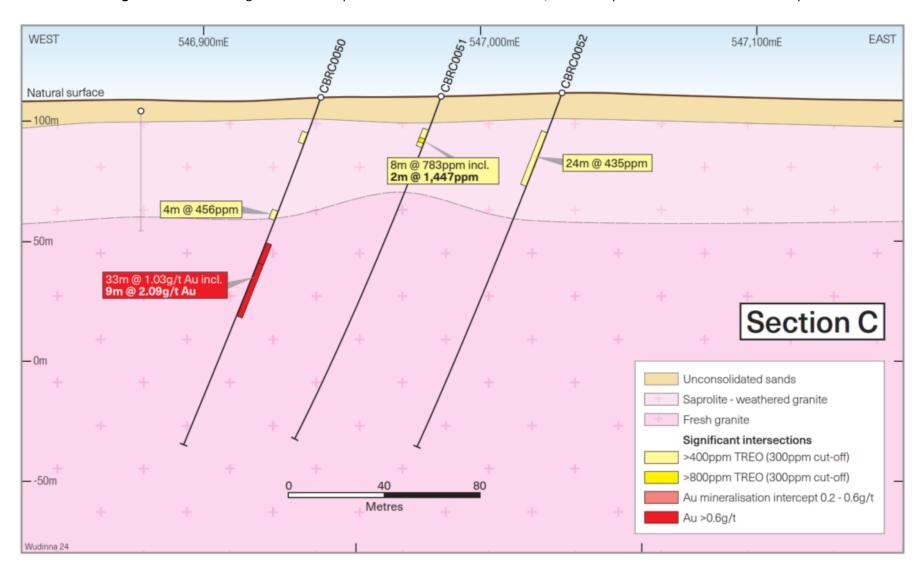
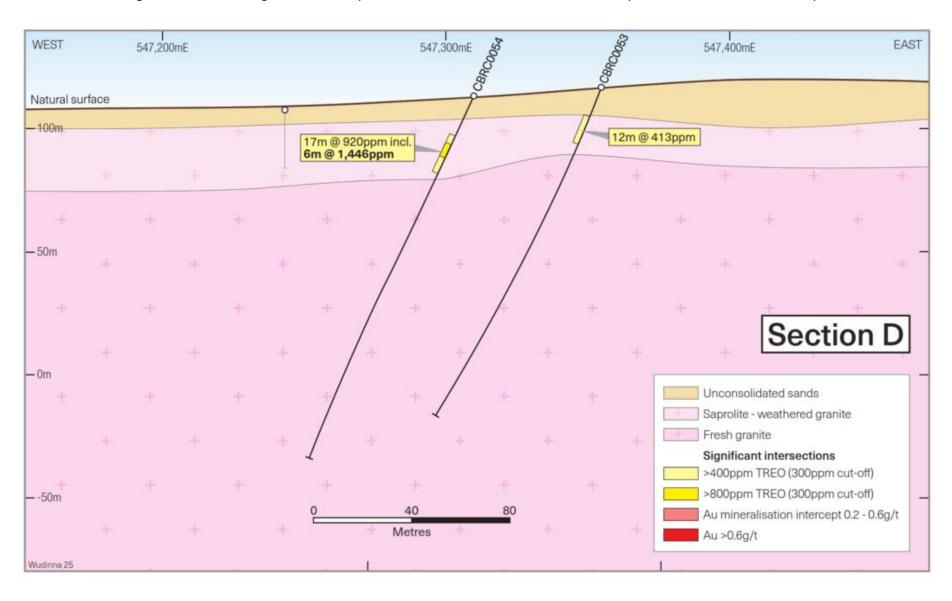



Figure 4: Section D – significant intercepts of holes CBRC0053–CBRC0054, all results presented as downhole intercepts

Table 4: Drillhole assays through reported mineralised intercept (Au) of drillhole CBRC0050

Hole ID	From [m]	To [m]	Au (g/t)
CBRC0050	65	66	3.23
CBRC0050	66	67	4.92
CBRC0050	67	68	5.24
CBRC0050	68	69	0.58
CBRC0050	69	70	0.13
CBRC0050	70	71	0.24
CBRC0050	71	72	0.07
CBRC0050	72	73	0.14
CBRC0050	73	74	3.83
CBRC0050	74	75	0.84
CBRC0050	75	76	0.33
CBRC0050	76	77	0.25
CBRC0050	77	78	0.15
CBRC0050	78	79	0.25
CBRC0050	79	80	0.50
CBRC0050	80	81	0.25
CBRC0050	81	82	0.38
CBRC0050	82	83	0.12
CBRC0050	83	84	2.38
CBRC0050	84	85	1.27
CBRC0050	85	86	0.78
CBRC0050	86	87	0.41
CBRC0050	87	88	0.34
CBRC0050	88	89	0.15
CBRC0050	89	90	0.84
CBRC0050	90	91	0.61
CBRC0050	91	92	0.54
CBRC0050	92	93	0.55
CBRC0050	93	94	0.91
CBRC0050	94	95	0.19
CBRC0050	95	96	0.85
CBRC0050	96	97	0.92
CBRC0050	97	98	1.99
CBRC0050	98	99	0.36
CBRC0050	99	100	0.20
CBRC0050	100	101	0.08
CBRC0050	101	102	0.37
CBRC0050	102	103	0.29
CBRC0050	103	104	1.46

Appendix 1: JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Sampling during Cobra Resources' 2021 RC drilling programme at the Clarke prospect was obtained through RC drilling methods. Historic RC and RAB drilling methods have been employed at Clarke and Baggy Green prospects since 2000. Rotary air- core drilling occurred earlier in 2021 and was used to aid in the programme design but have not been used for grade estimations or defining results that are reported in this announcement. Samples were collected via a Metzke cone splitter mounted to the cyclone. 1m samples were managed through chute and butterfly valve to produce a 2-4 kg sample. Samples were taken from the point of collar, but only samples from the commencement of saprolite were selected for analysis. Samples submitted to the Genalysis Intertek Laboratories, Adelaide, and pulverised to produce the 50 g fire assay charge.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Drilling completed by Bullion Drilling Pty Ltd using 5 ¾" reverse circulation drilling techniques from a Schramm T685WS rig with an auxiliary compressor. 2020 RC Drilling was undertaken by Hagstrom Drilling using an Austrex AC/RC rig using a 140 mm bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have 	 Sample recovery was generally good with water being intersected in 10% of the drilled holes. All samples were recorded for sample type, quality and contamination potential and entered within a sample log. In general, sample recoveries were good with 35-50 kg for each one metre interval being recovered.

occurred due to preferential loss/gain of fine/coarse material.

No relationships between sample recovery and grade have been identified.

Logging

- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
- Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.
- The total length and percentage of the relevant intersections logged.
- All drill samples were logged by an experienced geologist at the time of drilling. Lithology, colour, weathering and moisture were documented.
- · All drilled metres were logged.
- Logging is generally qualitative in nature.
- All RC drill metres have been geologically logged (2,144m in total).

Sub-sampling techniques and sample preparation

- If core, whether cut or sawn and whether quarter, half or all core taken.
- If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.
- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.

- Sample recovery from hole CBRC0042
 was considered excessive. All samples
 were split using a secondary riffle splitter to
 obtain a 50% sample reduction to produce
 a more manageable sample. Once chute
 and valve settings were adjusted to provide
 suitable sample returns, no further subsampling was required.
- Additional sub-sampling was performed through the preparation and processing of samples according to the laboratory's internal protocols.
- Duplicate samples were collected from the second chute on the cyclone splitter at a 1 in 20 sample frequency.
- Sample sizes were appropriate for the material being sampled.

Quality of assay data and laboratory tests

- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

- Samples were submitted to Genalysis Intertek Laboratories, Adelaide, for preparation and analysis.
- Gold quantity was analysed using 50 g fire assay techniques (FA50/OE04) that utilise a 50 g lead collection fire assay with ICP-OES finish to deliver reportable precision to 0.005 ppm.
- Multi-element geochemistry was digested by four acid ICP-MS and analysed for Ag, As, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Li, Mg, Mn, Mo, Ni, Pb, Pd, Pt, Sb, Se, S, Sn, Sr, Te, U, V, W, Y and Zn.
- Saprolite zones of all holes drilled in 2021 were identified and highlighted to analyse for lanthanide elements.
- 40 additional pulp samples were identified from CBRC0009 (drilled in 2020) to analyse for additional lanthanide elements

- by 4-acid ICP-MS and analysed for Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu.
- Field blanks and standards were submitted at a frequency of 1 in 20 samples.
- Field duplicate samples were submitted at a frequency of 1 in 20 samples.
- Reported assays are to acceptable levels of accuracy and precision.
- Samples from the 2020 RC programme analysed by ALS, Adelaide, using AU-GA22 50 g charge. Muti-elements (48) for all samples we analysed using ME-MS61, a 4-acid digest method with an ICP-MS finish.

Verification of sampling and assaying

- The verification of significant intersections by either independent or alternative company personnel.
- The use of twinned holes.
- Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.
- Sampling data was recorded in field books, checked upon digitising and transferred to database.
- Compositing of assays was undertaken and reviewed by Cobra staff.
- Original copies of lab assay data are retained digitally on the Cobra server for future reference.
- Physical copies of field sampling books and field geological logs are retained by Cobra for future reference.
- Historic significant intercepts have been calculated using datamine software with a 0.5 g/t cut-off and a maximum internal dilution of 3m.
- Significant intercepts have been prepared by Mr Rupert Verco and reviewed by Mr Robert Blythman.

Location of data points

- Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.
- Specification of the grid system used.
- Quality and adequacy of topographic control.
- Collar locations were surveyed using Leica CS20 GNSS base and rover with 0.05cm instrument precision.
- Locations are recorded in geodetic datum GDA 94 zone 53.
- Downhole surveys were undertaken by Bullion Drilling using a Reflex TN14 Gyro compass and were taken at 10m intervals at the completion of the hole.
- Downhole survey azimuths have been converted from true north to geodetic datum GDA 94 zone 53.

Data spacing and distribution

- Data spacing for reporting of Exploration Results.
- Whether the data spacing and distribution is sufficient to establish the degree of geological and grade
- Hole CBRC0042 was drilled 75m North of CBRC0009 and was drilled to the northeast.
- Transect CBRC0043 was collared 25m north and 50m east of CBRC0009 and

	continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications	drilled to the southwest. All other holes were drilled to the southeast on northwest transects at a spacing of 50m by 100m.
	applied.Whether sample compositing has	 Hole dips vary between 60 and 70 degrees.
	been applied.	No sample compositing has been applied.
Orientation of data in relation to geological	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to	 The programme was designed to test alternate interpretations on structural orientation.
structure	which this is known, considering the deposit type.	Holes CBRC0042 and CBRC0043 were scissored to test the orientation of
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if	mineralisation. The results support a northwest strike and an apparent northeast dip. Further results are required to confirm the continuity and validity of the current interpretation.
	material.	 Gold results are not presented as true width but are not considered to present any down-dip bias.
		 Rare Earth intercepts have been presented as both downhole and true width intercepts. The nature of mineralisation reflects the weathering profile of the saprolite and is therefore horizontal in nature. Reported true widths are calculated as vertical.
Sample security	The measures taken to ensure sample security.	Transportation of samples to Adelaide was undertaken by a competent independent contractor. Samples were packaged in zip tied polyweave bags in bundles of five samples and transported in larger bulka bags by batch while being transported.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audit or review has been undertaken.
Toviows	sampiing teoriniques and data.	 Genalysis Intertek Laboratories Adelaide are a National Association of Testing Authorities ("NATA") accredited laboratory, recognition of their analytical competence.

Appendix 2: Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships,	This drilling programme has been carried out on EL 6131, currently owned 100% by Peninsula Resources limited, a wholly owned subsidiary of Andromeda Metals Limited.
	overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 Newcrest Mining Limited retains a 1.5% NSR royalty over future mineral production from both exploration licences.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 Baggy Green, Clarke, Laker and the IOCG targets are located within Pinkawillinie Conservation Park. Native Title Agreement has been negotiated with the NT Claimant and has been registered with the SA Government.
		 Aboriginal heritage surveys have been completed over the Baggy Green project area, with no sites located in the immediate vicinity.
		 A Native Title Agreement is in place with the relevant Native Title party.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 On-ground exploration completed prior to Andromeda Metals' work was limited to 400m spaced soil geochemistry completed by Newcrest Mining Limited over the Barns prospect.
		 Other than the flying of regional airborne geophysics and coarse spaced ground gravity, there has been no recorded exploration in the vicinity of the Baggy Green deposit prior to Andromeda Metals' work.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The deposits are considered to be either lode gold or intrusion type mineralisation related to the 1590 Ma Hiltaba/GRV tectonothermal event.
		 Gold mineralisation has a spatial association with mafic intrusions/granodiorite alteration and is associated with metasomatic alteration of host rocks.
		 Rare earth minerals occur within the kaolinised saprolite horizon. Preliminary XRD analyses performed by the CSIRO supports IAC mineralisation. Florencite and monazite were also detected. Further work is planned to define mineralogy and nature of mineral occurrence.
	 A summary of all information material to the understanding of 	 The report includes a tabulation of drillhole collar information and associated interval

the exploration results including a tabulation of the following information for all material drill holes:

- easting and northing of the drill hole collar
- elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar
- o dip and azimuth of the hole
- down hole length and interception depth
- o hole length.
- If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

grades to allow an understanding of the results reported herein.

Data aggregation methods

- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually material and should be stated.
- Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.

- Reported summary intercepts are weighted averages based on length.
- Rare earth intercepts have been presented as both down hole and true width intercepts. The nature of mineralisation reflects the weathering profile of the saprolite and is therefore horizontal in nature. Average intercept widths and grade have been reported using datamines true width calculator to account for downhole surveys.
- Rare earth results are reported with a 300 ppm TREO cut-over grade and a maximum internal dilution of 5m.
- Assayed intervals through reported intercepts are tabulated in the body of this report.
- No metal equivalent values have been calculated.
- REE analysis was originally reported in elemental form and has been converted to relevant oxide concentrations in line with industry standards. Conversion factors tabulated below:

Element	Oxide	Factor
Cerium	CeO2	1.2284
Dysprosium	Dy2O3	1.1477

Erbiu	m	Er2O3	1.1435
Europ	oium	Eu2O3	1.1579
Gado	linium	Gd2O3	1.1526
Holmi	um	Ho2O3	1.1455
Lanth	anum	La2O3	1.1728
Luteti	um	Lu2O3	1.1371
Neod	ymium	Nd2O3	1.1664
Prase	odymium	Pr2O3	1.1703
Scan	dium	Sc2O3	1.5338
Sama	ırium	Sm2O3	1.1596
Terbi	um	Tb2O3	1.151
Thuliu	ım	Tm2O3	1.1421
Yttriu	m	Y2O3	1.2699
Ytterb	oium	Yb2O3	1.1387

- The reporting of REE oxides is done so in accordance with industry standards with the following calculations applied:
 - TREO = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3
 - CREO = Nd2O3 + Eu2O3 + Tb4O7 + Dy2O3 + Y2O3
 - LREO = La2O3 + CeO2 + Pr6O11 + Nd2O3
 - HREO = Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3
 - NdPr = Nd2O3 + Pr6O11
 - TREO-Ce = TREO CeO2
 - % Nd = Nd2O3/ TREO
 - %Pr = Pr6O11/TREO
 - %Dy = Dy2O3/TREO
 - %HREO = HREO/TREO
 - %LREO = LREO/TREO

Relationship between mineralisation widths and intercept lengths

- These relationships are particularly important in the reporting of Exploration Results.
- If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.
- If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (eg 'downhole length, true width not known').
- This drilling programme is designed to confirm the orientation and continuity of mineralisation. Preliminary results support unbiased testing of mineralized structures.
- Previous holes drilled have been drilled in several orientations due to the unknown nature of mineralisation.
- The work completed to date is not considered robust to adequately define mineralisation geometry.

Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views.	Plan and section maps are referenced that demonstrate results of interest.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Referenced plans detail the extent of drilling and the locations of both high and low grades. Comprehensive results are reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Significant intercepts of reported previous drilling is tabulated (CBRC0009). Historic significant intercepts from Clarke as tabulated in appendix 3.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further RC drilling is planned to test for both lateral and depth extensions. The complete results from this programme will form the foundation for a maiden resource estimation at Clarke.

Appendix 3: Drillhole data – 1m samples through reported intercepts.

Table 5: Reporting through rare earth intercepts

Hole ID	Fro m (m)	To (m)	CeO2	Dy2O3	Er203	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr601 1	Sm2O 3	Tb2O3	Tm2O 3	Y2O3	Yb2O3	TREO	TREO - Ce	LREO	HREO	% HREO	%NdPr	%Dy2 O3	Th ppm	U ppm
CBRC0044	33	34	291	5.6	3.1	1.5	6.7	1.1	67.2	0.4	53	15.1	8.7	1.0	0.4	29.3	2.9	487	196	435	52	10.7%	14.0%	1.1%	30.5	6.5
CBRC0044	34	35	353	8.7	4.4	2.3	10.8	1.6	99.7	0.5	84	22.9	13.9	1.6	0.6	44.0	4.1	652	299	573	79	12.1%	16.4%	1.3%	32.6	7.7
CBRC0044	35	36	503	20.8	10.6	5.8	26.8	3.8	237.2	1.1	211	55.6	34.6	3.8	1.4	102.7	8.6	1,227	724	1,042	185	15.1%	21.7%	1.7%	32.8	12.9
CBRC0044	36	37	704	14.9	7.9	4.0	18.2	2.8	151.7	0.9	138	38.4	23.8	2.7	1.1	70.3	7.2	1,186	482	1,056	130	11.0%	14.9%	1.3%	31.7	10.2
CBRC0044	37	38	213	12.6	6.7	4.0	16.5	2.3	146.6	0.9	155	45.4	25.9	2.4	1.0	50.7	6.5	690	477	587	104	15.0%	29.1%	1.8%	27.1	7.1
CBRC0044	38	39	242	17.6	9.9	4.9	21.9	3.4	176.8	1.3	173	47.8	29.0	3.1	1.4	85.8	9.3	827	585	668	159	19.2%	26.7%	2.1%	27.6	6.3
CBRC0044	39	40	135	14.3	7.5	4.3	18.9	2.6	160.2	1.0	151	42.8	25.2	2.6	1.1	64.9	7.1	639	504	515	124	19.5%	30.4%	2.2%	23.7	4.0
CBRC0044	40	41	209	18.4	8.1	5.8	24.5	3.1	225.2	0.9	198	56.7	34.5	3.4	1.1	76.1	6.9	872	663	724	148	17.0%	29.2%	2.1%	26.9	3.9
CBRC0044	41	42	131	15.3	7.7	4.9	21.3	2.8	181.6	1.0	169	47.4	29.0	2.9	1.1	69.2	6.9	691	560	558	133	19.3%	31.3%	2.2%	27.8	4.5
CBRC0044	42	43	132	19.5	9.2	5.8	26.5	3.4	196.0	1.1	181	49.8	33.2	3.7	1.3	83.1	8.2	753	621	591	162	21.5%	30.6%	2.6%	29.1	4.2
CBRC0044	43	44	192	39.3	20.0	10.0	48.7	7.3	336.9	2.4	272	74.1	51.0	7.0	2.8	201.1	17.4	1,281	1,090	925	356	27.8%	27.0%	3.1%	22.8	4.8
CBRC0044	44	45	358	72.9	41.6	15.4	81.2	14.3	483.2	5.0	376	100.0	71.1	12.5	5.7	461.6	35.1	2,133	1,775	1,388	745	34.9%	22.3%	3.4%	18.8	5.1
CBRC0044	45	46	160	10.6	6.2	2.3	11.6	2.1	88.4	0.8	68	19.2	12.5	1.7	0.9	66.2	5.4	456	296	348	108	23.6%	19.1%	2.3%	21.4	2.9
CBRC0044	46	47	158	10.8	6.0	2.5	11.8	2.1	90.4	0.8	71	19.4	13.0	1.9	0.9	58.9	5.5	452	295	351	101	22.3%	19.9%	2.4%	17.8	3.2
CBRC0044	47	48	133	7.9	5.0	1.7	8.1	1.6	61.6	0.7	47	13.1	8.7	1.3	0.7	48.3	4.9	344	211	264	80	23.3%	17.6%	2.3%	20.1	4.3
CBRC0044	48	49	145	7.0	3.8	1.7	7.9	1.3	60.9	0.5	51	14.2	9.3	1.2	0.5	38.1	3.5	346	201	281	66	18.9%	18.8%	2.0%	22.7	4.2
CBRC0044	49	50	144	5.3	3.0	1.4	6.2	1.0	50.7	0.4	45	12.6	7.7	0.9	0.4	28.9	3.0	311	167	260	51	16.3%	18.6%	1.7%	21.2	4.3
CBRC0044	50	51	123	5.0	3.1	1.2	5.5	1.0	42.7	0.4	38	10.2	6.3	0.8	0.4	29.3	3.1	270	147	220	50	18.5%	17.7%	1.9%	25.1	4.6
CBRC0044	51	52	207	14.3	6.9	3.3	16.3	2.7	94.7	0.8	83	20.8	16.5	2.5	1.0	71.2	6.0	547	340	422	125	22.8%	19.0%	2.6%	25.5	5.0
CBRC0044	52	53	139	15.6	8.6	3.4	16.5	3.0	73.1	1.1	80	18.9	16.2	2.6	1.2	87.1	7.8	474	335	327	147	31.0%	20.8%	3.3%	14.1	4.8
CBRC0044	53	54	157	9.5	5.4	2.2	10.9	1.9	83.7	0.7	68	18.6	12.1	1.6	0.8	50.0	5.3	428	271	340	88	20.6%	20.3%	2.2%	24.4	5.0
CBRC0043	41	42	327	26.6	13.3	8.6	33.4	4.5	197.9	1.6	244	67.2	46.3	4.8	1.9	107.3	12.8	1,097	770	882	215	19.6%	28.3%	2.4%	25.9	6.2
CBRC0043	42	43	398	66.4	34.8	19.2	85.7	12.0	543.9	4.5	534	145.8	97.3	12.1	5.0	309.7	33.7	2,303	1,904	1,720	583	25.3%	29.5%	2.9%	25.9	5.7
CBRC0043	43	44	275	27.1	14.7	7.5	33.0	4.9	211.6	1.8	198	54.5	36.7	4.8	2.1	127.1	13.2	1,012	737	776	236	23.3%	25.0%	2.7%	26.6	5.1

Hole ID	Fro m (m)	To (m)	CeO2	Dy2O 3	Er20 3	Eu2O 3	Gd2O 3	Ho2O 3	La2O 3	Lu20 3	Nd2O 3	Pr60 11	Sm2O 3	Tb2O 3	Tm2O 3	Y2O3	Yb2O 3	TREO	TREO - Ce	LREO	HREO	% HREO	%NdP r	%Dy2 O3	Th ppm	U ppm
CBRC0043	44	45	238	20.3	11.5	5.2	23.4	3.7	154.4	1.4	134	36.8	24.8	3.4	1.6	105.0	10.4	774	536	588	186	24.0%	22.1%	2.6%	25.7	5.1
CBRC0043	45	46	172	12.9	7.8	3.0	14.3	2.5	87.4	1.0	74	20.3	14.3	2.2	1.1	81.2	6.9	501	329	368	133	26.5%	18.8%	2.6%	23.6	5.5
CBRC0043	46	47	189	14.2	9.1	3.1	14.6	2.8	83.1	1.2	71	19.5	14.5	2.3	1.3	95.9	8.4	531	341	378	153	28.8%	17.1%	2.7%	26.6	6.6
CBRC0043	47	48	173	10.4	5.9	2.6	11.4	1.9	79.2	0.7	68	18.8	12.7	1.7	0.8	59.4	5.0	451	278	352	100	22.1%	19.2%	2.3%	22.3	5.6
CBRC0043	48	49	204	12.0	6.8	3.1	12.8	2.3	88.9	0.8	78	21.8	14.9	2.0	0.9	70.7	5.9	524	321	407	117	22.4%	19.0%	2.3%	25.6	4.9
CBRC0043	49	50	155	8.8	4.7	2.2	9.5	1.6	67.6	0.5	59	16.1	11.2	1.5	0.6	48.9	4.1	392	237	310	83	21.0%	19.2%	2.3%	17.4	4.0
CBRC0043	50	51	112	7.2	4.1	1.9	7.7	1.3	51.0	0.5	46	12.4	8.9	1.2	0.5	38.9	3.5	298	185	231	67	22.5%	19.7%	2.4%	11.8	3.5
CBRC0043	51	52	254	11.6	5.6	3.3	13.4	2.0	110.8	0.5	94	26.8	16.7	2.0	0.7	55.1	4.4	602	347	503	99	16.4%	20.1%	1.9%	23.3	4.0
CBRC0043	52	53	234	10.7	5.3	3.1	12.4	1.8	103.0	0.6	88	24.1	15.3	1.9	0.7	52.7	4.5	559	324	465	94	16.8%	20.1%	1.9%	19.5	4.7
CBRC0043	53	54	224	10.5	5.2	3.1	12.2	1.8	96.4	0.5	82	23.6	14.8	1.9	0.7	53.4	4.3	534	310	440	94	17.5%	19.8%	2.0%	18.6	5.0
CBRC0043	54	55	229	11.5	5.6	3.2	12.9	1.9	100.8	0.6	88	24.6	16.2	2.1	0.7	54.9	4.6	557	328	459	98	17.6%	20.3%	2.1%	19.0	3.9
CBRC0045	33	34	697	14.3	7.7	3.5	16.3	2.8	101.4	0.8	93	24.9	18.4	2.5	1.0	72.4	6.3	1,062	365	935	128	12.0%	11.1%	1.3%	41.4	9.5
CBRC0045	34	35	539	20.5	10.5	5.0	24.0	3.8	170.2	1.1	150	40.2	28.7	3.6	1.4	99.1	8.9	1,106	567	929	178	16.1%	17.2%	1.8%	35.9	8.7
CBRC0045	35	36	347	14.2	7.9	3.6	17.5	2.8	141.8	1.0	130	35.3	22.5	2.5	1.1	76.8	7.1	811	464	677	134	16.6%	20.4%	1.8%	36.4	8.0
CBRC0045	36	37	219	10.0	5.6	2.5	12.0	2.0	92.9	0.7	82	22.4	14.8	1.7	0.8	57.9	5.3	530	311	431	99	18.6%	19.7%	1.9%	29.2	6.6
CBRC0045	37	38	173	6.3	4.0	1.4	6.8	1.3	43.5	0.6	40	11.1	8.1	1.1	0.6	39.1	4.0	341	168	276	65	19.1%	15.1%	1.8%	24.4	7.1
CBRC0045	38	39	159	4.3	2.9	0.8	4.1	0.9	28.9	0.5	23	6.4	4.8	0.7	0.4	27.4	3.1	268	109	223	45	16.9%	11.2%	1.6%	19.8	4.5
CBRC0045	39	40	769	51.5	23.2	15.0	66.7	9.0	457.5	2.1	450	121.7	86.8	10.1	3.1	226.0	18.8	2,312	1,542	1,886	426	18.4%	24.8%	2.2%	25.5	7.8
CBRC0045	40	41	355	50.4	23.9	12.6	58.6	8.9	374.3	2.7	350	93.3	67.8	9.2	3.4	200.1	22.0	1,631	1,277	1,240	392	24.0%	27.2%	3.1%	29.8	5.2
CBRC0045	41	42	155	8.1	4.3	1.9	10.0	1.5	64.2	0.5	60	15.7	11.5	1.5	0.6	40.7	4.0	380	225	307	73	19.3%	20.0%	2.1%	21.3	3.6
CBRC0045	42	43	113	4.6	2.6	1.2	5.7	0.9	44.0	0.3	35	9.5	6.3	0.8	0.4	24.3	2.6	252	138	208	44	17.3%	17.7%	1.8%	18.9	2.8
CBRC0045	43	44	75	2.5	1.6	0.7	2.9	0.5	20.9	0.2	19	5.2	3.4	0.4	0.2	14.7	1.7	149	74	123	26	17.1%	16.2%	1.7%	16.0	2.1
CBRC0045	44	45	126	6.6	3.6	1.7	8.2	1.3	57.0	0.4	48	12.3	9.1	1.2	0.5	35.7	3.2	314	188	252	62	19.9%	19.1%	2.1%	22.8	2.5
CBRC0045	45	46	90	6.4	4.3	1.4	7.0	1.4	38.1	0.6	34	9.1	7.0	1.1	0.7	43.8	4.3	249	160	178	71	28.5%	17.4%	2.6%	20.3	3.5
CBRC0045	46	47	203	18.6	10.4	4.6	21.8	3.6	133.6	1.3	119	32.3	23.6	3.3	1.4	100.7	9.3	687	484	512	175	25.5%	22.1%	2.7%	26.2	4.9
CBRC0045	47	48	139	8.8	5.2	2.0	10.2	1.8	68.4	0.8	58	15.8	11.1	1.5	0.7	49.5	5.0	378	239	292	86	22.6%	19.6%	2.3%	24.7	3.7
CBRC0045	48	49	127	8.0	5.1	1.7	8.8	1.7	58.1	0.8	50	13.2	9.4	1.4	0.8	51.4	5.0	342	215	258	85	24.7%	18.4%	2.3%	20.8	3.8
CBRC0045	49	50	105	6.9	4.8	1.5	7.5	1.5	52.1	0.8	44	12.1	8.4	1.1	0.7	50.0	5.0	301	196	221	80	26.5%	18.5%	2.3%	18.9	3.4

Hole ID	Fro m (m)	To (m)	CeO2	Dy2O 3	Er20 3	Eu2O 3	Gd2O 3	Ho2O 3	La2O 3	Lu20 3	Nd2O 3	Pr60 11	Sm2O 3	Tb2O 3	Tm2O 3	Y2O3	Yb2O 3	TREO	TREO - Ce	LREO	HREO	% HREO	%NdP r	%Dy2 O3	Th ppm	U ppm
CBRC0045	50	51	125	6.3	4.1	1.5	7.2	1.4	52.8	0.6	45	12.2	8.2	1.2	0.6	39.7	4.1	310	184	243	67	21.5%	18.3%	2.0%	20.0	4.3
CBRC0045	51	52	91	4.5	2.9	1.3	5.4	0.9	40.4	0.4	35	9.7	6.3	0.8	0.4	27.8	2.8	230	139	183	47	20.6%	19.4%	2.0%	19.2	3.6
CBRC0045	52	53	92	5.2	3.2	1.4	6.0	1.1	42.2	0.5	38	10.3	7.2	0.9	0.4	30.2	3.1	243	150	190	52	21.5%	20.0%	2.1%	19.0	3.7
CBRC0045	53	54	78	8.1	5.1	1.9	8.7	1.7	45.9	0.8	41	10.5	8.5	1.3	0.7	48.0	4.9	265	187	184	81	30.7%	19.4%	3.1%	21.7	4.7
CBRC0045	54	55	388	59.5	40.2	9.4	55.9	13.2	184.5	5.4	190	45.6	43.9	9.3	5.6	438.1	36.9	1,526	1,137	852	674	44.1%	15.4%	3.9%	20.4	6.2
CBRC0045	55	56	126	25.2	20.9	3.7	21.6	6.4	56.0	3.1	61	13.7	15.1	3.7	3.0	250.5	19.8	629	503	271	358	56.8%	11.9%	4.0%	10.3	3.6
CBRC0045	56	57	150	44.5	37.4	6.3	38.8	11.3	68.7	5.4	92	18.1	24.2	6.4	5.3	459.7	35.7	1,004	854	353	651	64.8%	11.0%	4.4%	9.0	3.2
CBRC0046	21	22	385	11.8	5.3	3.7	16.4	2.0	143.9	0.6	141	39.4	23.2	2.2	0.7	50.7	4.0	829	445	732	97	11.7%	21.7%	1.4%	56.5	8.7
CBRC0046	22	23	307	13.8	6.4	4.4	19.0	2.3	175.1	0.7	173	48.9	28.2	2.6	0.8	62.6	4.7	849	542	732	117	13.8%	26.1%	1.6%	47.2	9.6
CBRC0046	23	24	364	17.1	8.3	5.1	23.0	3.0	217.6	0.9	197	55.4	32.5	3.2	1.1	80.6	6.3	1,015	651	866	149	14.6%	24.8%	1.7%	43.4	6.7
CBRC0046	24	25	280	15.6	8.1	4.3	19.5	2.8	183.7	0.9	159	45.0	26.5	2.8	1.0	80.8	6.3	836	556	694	142	17.0%	24.4%	1.9%	31.9	5.2
CBRC0046	25	26	290	19.6	10.0	5.8	25.2	3.5	211.7	1.1	206	57.5	35.1	3.5	1.3	100.2	8.0	979	689	801	178	18.2%	27.0%	2.0%	36.4	5.3
CBRC0046	26	27	213	14.1	7.7	4.0	18.0	2.6	159.1	0.9	140	39.7	24.5	2.5	1.0	80.2	5.8	713	500	576	137	19.2%	25.3%	2.0%	27.6	3.2
CBRC0046	27	28	361	17.9	8.9	5.4	24.3	3.2	218.1	1.0	196	54.7	32.8	3.3	1.1	91.2	6.9	1,025	665	862	163	15.9%	24.4%	1.7%	36.1	6.6
CBRC0046	28	29	304	19.9	11.0	5.4	24.4	3.6	204.4	1.3	183	50.5	31.3	3.5	1.4	115.1	8.6	967	663	773	194	20.1%	24.1%	2.1%	33.0	3.9
CBRC0046	29	30	369	24.7	13.3	6.4	31.3	4.5	223.2	1.5	214	58.3	37.3	4.4	1.7	139.9	10.0	1,140	771	902	238	20.8%	23.9%	2.2%	40.7	3.8
CBRC0046	30	31	239	13.4	6.9	3.7	16.7	2.4	148.6	0.8	129	36.0	22.2	2.4	0.9	71.1	5.4	698	459	574	124	17.7%	23.6%	1.9%	32.5	4.7
CBRC0046	31	32	265	13.7	6.9	3.8	17.4	2.4	174.1	0.9	134	38.0	22.1	2.4	0.9	74.0	5.5	761	496	633	128	16.8%	22.6%	1.8%	32.3	3.4
CBRC0046	32	33	260	14.5	6.7	4.6	19.7	2.5	178.2	0.6	143	40.2	24.7	2.8	0.8	67.4	4.6	770	510	646	124	16.1%	23.7%	1.9%	22.8	2.9
CBRC0046	33	34	268	17.7	8.2	4.9	23.0	3.0	175.0	0.8	147	39.9	25.3	3.2	1.0	95.8	5.4	819	551	656	163	19.9%	22.9%	2.2%	19.3	3.6
CBRC0046	34	35	200	13.0	6.2	3.5	16.2	2.3	136.7	0.7	108	30.5	19.2	2.4	0.8	67.5	4.6	612	412	494	117	19.1%	22.7%	2.1%	28.5	2.5
CBRC0046	35	36	242	17.2	8.8	4.2	20.5	3.0	175.6	1.0	128	36.0	22.1	3.1	1.1	90.7	6.4	759	518	603	156	20.5%	21.6%	2.3%	30.4	2.7
CBRC0046	36	37	108	10.9	7.1	2.2	11.6	2.2	68.2	1.0	59	15.2	10.9	1.7	0.9	74.2	5.7	378	270	260	117	31.1%	19.5%	2.9%	23.4	2.4
CBRC0046	37	38	39	7.8	5.6	1.2	6.5	1.7	35.5	0.8	25	6.8	5.1	1.1	0.8	56.2	5.0	198	159	111	87	43.8%	16.1%	4.0%	19.3	2.5
CBRC0046	38	39	177	13.9	7.3	3.2	15.8	2.4	137.8	0.9	95	27.1	16.9	2.3	0.9	72.6	5.5	579	402	454	125	21.5%	21.1%	2.4%	37.9	3.3
CBRC0046	39	40	116	9.6	5.6	2.0	10.3	1.8	79.9	0.7	60	17.2	10.6	1.6	0.7	56.9	4.4	377	261	283	94	24.8%	20.4%	2.5%	29.7	2.8
CBRC0046	40	41	108	9.5	6.2	1.8	9.8	2.0	58.0	0.8	55	14.9	10.0	1.5	0.8	63.7	4.9	347	239	246	101	29.1%	20.0%	2.7%	32.3	2.8
CBRC0046	41	42	142	8.8	5.3	1.9	10.4	1.8	83.0	0.7	64	18.2	11.1	1.5	0.7	57.3	4.1	411	269	318	93	22.5%	20.0%	2.1%	35.4	2.7

Hole ID	Fro m (m)	To (m)	CeO2	Dy20 3	Er20 3	Eu2O 3	Gd2O 3	Ho2O 3	La20 3	Lu20 3	Nd2O 3	Pr60 11	Sm2O 3	Tb2O 3	Tm20 3	Y2O3	Yb2O 3	TREO	TREO - Ce	LREO	HREO	% HREO	%NdP r	%Dy2 O3	Th ppm	U ppm
CBRC0046	42	43	79	6.5	3.8	1.5	7.3	1.3	62.5	0.5	43	12.6	7.6	1.1	0.5	39.1	3.1	270	190	205	65	24.0%	20.6%	2.4%	36.3	3.2
CBRC0046	43	44	266	13.2	6.6	3.9	17.7	2.4	127.7	0.7	121	33.0	21.0	2.4	0.8	70.9	4.7	693	426	569	123	17.8%	22.3%	1.9%	26.3	3.1
CBRC0046	44	45	323	15.3	8.8	3.8	19.3	3.0	136.8	1.1	133	35.8	23.2	2.7	1.2	93.7	6.9	808	484	652	156	19.3%	20.9%	1.9%	31.1	2.6
CBRC0046	45	46	126	6.1	4.0	1.4	7.1	1.2	54.2	0.6	50	13.7	8.5	1.0	0.6	38.4	3.6	316	190	252	64	20.2%	20.1%	1.9%	28.9	2.9
CBRC0046	46	47	254	6.1	3.5	1.7	9.0	1.1	106.4	0.5	89	26.2	13.6	1.1	0.5	36.4	3.3	553	299	489	63	11.4%	20.9%	1.1%	44.0	2.8
CBRC0046	47	48	140	5.4	3.0	1.4	7.0	1.0	67.1	0.4	56	15.8	9.3	1.0	0.4	30.9	2.7	341	202	288	53	15.5%	21.1%	1.6%	23.4	2.4
CBRC0046	48	49	164	8.1	5.2	1.7	9.8	1.6	72.0	0.8	62	17.0	10.5	1.3	0.7	53.2	4.4	412	248	325	87	21.1%	19.1%	2.0%	23.3	2.8
CBRC0046	49	50	108	4.4	2.7	1.2	5.6	0.8	53.4	0.4	42	12.0	7.2	0.8	0.4	25.3	2.5	267	158	223	44	16.5%	20.2%	1.6%	22.0	2.1
CBRC0046	50	51	174	6.5	3.9	1.6	8.3	1.2	77.9	0.6	66	18.8	10.9	1.1	0.5	36.6	3.6	412	238	348	64	15.5%	20.6%	1.6%	26.8	2.7
CBRC0046	51	52	384	15.4	8.8	3.9	20.1	2.9	178.1	1.2	150	40.7	24.6	2.7	1.2	91.1	7.1	931	547	777	154	16.6%	20.4%	1.7%	34.7	3.1
CBRC0046	52	53	337	31.2	20.3	7.0	32.6	6.4	172.3	2.4	166	42.4	30.3	4.9	2.6	254.9	15.0	1,125	788	748	377	33.5%	18.5%	2.8%	22.0	3.8
CBRC0046	53	54	350	39.6	29.1	6.7	42.9	9.0	228.4	4.1	171	39.7	30.1	6.0	3.9	365.2	24.4	1,350	1,000	819	531	39.3%	15.6%	2.9%	13.4	2.7
CBRC0046	54	55	339	16.3	11.2	3.6	20.2	3.5	170.9	1.5	133	36.5	20.7	2.7	1.5	144.3	8.7	913	574	700	213	23.4%	18.5%	1.8%	44.2	3.6
CBRC0046	55	56	250	14.9	9.3	4.3	17.8	2.9	123.0	1.2	114	30.6	19.5	2.5	1.2	110.9	7.5	710	460	538	173	24.3%	20.4%	2.1%	23.2	3.0
CBRC0046	56	57	145	6.5	3.9	1.8	8.0	1.3	58.4	0.5	55	14.9	9.3	1.1	0.5	45.0	3.2	355	210	283	72	20.3%	19.8%	1.8%	15.9	1.6
CBRC0046	57	58	263	9.1	5.0	2.2	12.4	1.7	127.6	0.6	100	28.6	15.7	1.6	0.6	57.9	3.9	631	368	535	95	15.1%	20.5%	1.4%	33.8	2.7
CBRC0046	58	59	427	12.5	7.1	3.0	17.5	2.3	200.7	1.0	149	43.3	23.5	2.3	0.9	75.6	5.7	972	545	844	128	13.2%	19.8%	1.3%	52.4	3.6
CBRC0046	59	60	281	9.1	5.1	2.0	12.1	1.7	126.4	0.7	101	28.6	15.8	1.6	0.7	54.5	4.3	645	364	553	92	14.2%	20.2%	1.4%	42.1	2.9
CBRC0046	60	61	291	9.4	5.5	2.2	12.7	1.8	130.7	0.8	104	29.9	16.5	1.6	0.7	57.7	4.8	670	379	572	97	14.5%	20.1%	1.4%	44.6	3.1
CBRC0046	61	62	199	7.0	3.9	1.8	9.6	1.3	88.3	0.5	73	20.7	12.1	1.3	0.5	41.6	3.1	464	265	393	71	15.2%	20.2%	1.5%	25.8	2.1
CBRC0046	62	63	201	7.3	4.0	1.7	9.6	1.4	94.6	0.6	76	21.2	12.2	1.3	0.5	42.9	3.4	478	276	405	73	15.2%	20.3%	1.5%	28.5	2.4
CBRC0046	63	64	153	6.6	3.9	1.6	8.7	1.2	70.5	0.5	58	16.0	9.7	1.1	0.5	42.8	3.1	378	225	308	70	18.5%	19.7%	1.8%	20.6	2.1
CBRC0047	20	21	246	6.7	3.2	2.4	8.8	1.2	82.5	0.4	75	22.0	12.9	1.2	0.4	27.8	2.9	493	247	438	55	11.2%	19.6%	1.4%	27.4	6.5
CBRC0047	21	22	128	6.7	3.5	2.5	9.0	1.2	82.2	0.5	84	24.3	14.6	1.2	0.5	29.4	3.3	391	263	333	58	14.8%	27.6%	1.7%	27.5	7.0
CBRC0047	22	23	186	9.5	5.0	3.4	12.3	1.7	110.4	0.7	112	33.0	19.5	1.8	0.7	42.4	4.7	543	357	461	82	15.1%	26.8%	1.7%	32.6	7.4
CBRC0047	23	24	69	5.7	3.3	1.8	7.0	1.1	55.8	0.5	56	16.3	10.2	1.0	0.5	28.3	3.3	260	190	208	52	20.1%	27.7%	2.2%	13.8	3.7
CBRC0047	24	25	113	10.2	5.9	2.9	11.8	1.9	120.6	0.8	80	23.0	14.6	1.8	0.8	56.0	5.5	449	336	352	98	21.7%	23.0%	2.3%	12.9	3.3
CBRC0047	25	26	240	43.9	27.7	11.6	52.6	9.3	348.8	3.4	304	83.3	55.5	7.6	3.8	334.5	23.2	1,549	1,309	1,032	518	33.4%	25.0%	2.8%	27.5	6.1

Hole ID	Fro m (m)	To (m)	CeO2	Dy20 3	Er2O 3	Eu2O 3	Gd2O 3	Ho2O 3	La20 3	Lu20 3	Nd2O 3	Pr60 11	Sm2O 3	Tb2O 3	Tm2O 3	Y2O3	Yb2O 3	TREO	TREO - Ce	LREO	HREO	% HREO	%NdP r	%Dy2 O3	Th ppm	U ppm
CBRC0047	26	27	324	34.0	18.4	8.8	38.7	6.4	273.3	2.1	235	65.2	44.0	5.8	2.4	199.4	15.3	1,273	949	941	331	26.0%	23.6%	2.7%	21.7	10.0
CBRC0047	27	28	250	32.0	18.6	8.1	34.6	6.4	280.4	2.3	199	56.3	37.2	5.4	2.5	195.5	16.7	1,145	895	823	322	28.1%	22.3%	2.8%	31.1	9.1
CBRC0047	28	29	107	11.4	6.9	2.7	11.7	2.3	73.8	0.9	69	18.3	13.1	1.9	1.0	71.4	6.1	397	290	281	116	29.3%	21.9%	2.9%	23.9	5.6
CBRC0047	29	30	92	9.3	5.9	2.1	9.3	1.9	55.5	0.9	55	15.1	10.1	1.5	0.8	59.1	5.5	323	232	227	96	29.8%	21.6%	2.9%	23.9	4.2
CBRC0048	20	21	466	277.0	121.3	80.9	350.5	46.3	3100. 8	13.1	2293	687.6	440.4	52.1	16.5	973.8	104.9	9,024	8,558	6,988	2037	22.6%	33.0%	3.1%	46.1	72.6
CBRC0048	21	22	120	14.2	8.1	3.6	16.4	2.7	172.4	1.0	107	33.3	19.4	2.5	1.1	73.2	7.3	583	462	453	130	22.3%	24.1%	2.4%	25.7	8.9
CBRC0048	22	23	151	15.2	10.1	3.1	15.0	3.1	138.8	1.4	92	27.8	16.8	2.4	1.5	103.4	9.1	590	440	426	164	27.8%	20.3%	2.6%	31.8	6.2
CBRC0048	23	24	176	15.7	8.5	4.3	19.7	2.9	204.1	1.1	136	40.8	24.0	2.9	1.2	84.3	7.6	729	553	581	148	20.3%	24.3%	2.2%	35.0	7.0
CBRC0048	24	25	154	14.0	8.2	3.4	16.1	2.7	124.1	1.1	98	28.0	18.1	2.4	1.1	87.0	6.9	566	412	423	143	25.3%	22.4%	2.5%	31.7	7.0
CBRC0048	25	26	77	11.7	8.8	1.7	9.6	2.7	57.5	1.2	39	11.2	8.1	1.7	1.2	104.8	7.5	344	267	194	151	43.8%	14.7%	3.4%	20.3	5.9
CBRC0048	26	27	177	23.5	17.4	3.2	19.6	5.6	93.5	2.1	75	21.3	15.4	3.4	2.2	237.1	13.2	710	533	382	327	46.1%	13.6%	3.3%	33.0	8.5
CBRC0048	27	28	107	10.4	7.8	1.7	9.6	2.4	55.2	0.9	43	12.3	8.2	1.6	1.0	112.1	5.6	378	271	225	153	40.5%	14.5%	2.7%	21.7	6.0
CBRC0048	28	29	95	9.0	6.3	1.6	8.1	2.0	50.5	0.7	42	12.0	8.0	1.4	0.8	78.3	4.9	321	226	208	113	35.3%	16.9%	2.8%	21.1	5.9
CBRC0048	29	30	175	10.2	6.4	2.2	10.8	2.1	74.6	0.7	68	19.3	12.2	1.7	0.9	69.4	5.1	459	284	349	109	23.9%	19.1%	2.2%	28.2	5.9
CBRC0048	30	31	157	10.2	6.6	2.1	10.3	2.1	73.5	0.8	64	18.5	11.8	1.7	0.9	73.4	5.4	438	281	325	113	25.9%	18.8%	2.3%	28.9	5.5
CBRC0048	31	32	90	5.5	3.6	1.2	5.5	1.2	41.6	0.5	37	10.8	6.8	0.9	0.5	39.7	3.2	248	158	186	62	24.9%	19.3%	2.2%	19.4	4.5
CBRC0048	32	33	104	5.5	3.9	1.4	6.0	1.2	47.3	0.5	42	12.3	7.9	0.9	0.5	42.0	3.2	279	175	214	65	23.4%	19.4%	2.0%	20.4	3.8
CBRC0048	33	34	179	7.6	3.8	2.2	9.6	1.4	73.9	0.4	69	20.2	12.5	1.4	0.5	41.6	3.2	427	247	355	72	16.8%	20.9%	1.8%	25.4	4.2
CBRC0048	34	35	148	7.0	3.5	1.9	8.7	1.3	68.3	0.4	63	18.1	11.4	1.3	0.5	38.0	2.8	374	226	309	65	17.5%	21.6%	1.9%	22.2	3.6
CBRC0048	35	36	101	5.5	2.9	1.5	6.2	1.0	53.6	0.4	45	13.2	8.3	1.0	0.4	31.3	2.7	274	173	221	53	19.3%	21.3%	2.0%	20.2	3.3
CBRC0048	36	37	123	7.3	3.7	2.0	9.1	1.3	64.0	0.4	64	17.8	11.9	1.3	0.5	36.1	3.1	345	223	281	65	18.8%	23.7%	2.1%	25.1	2.8
CBRC0048	37	38	88	5.7	3.1	1.4	6.3	1.1	35.9	0.4	38	10.5	7.5	1.0	0.5	31.8	3.0	234	146	180	54	23.2%	20.6%	2.4%	21.0	2.4
CBRC0048	38	39	63	4.7	3.5	0.9	4.2	1.1	24.6	0.5	25	6.7	4.6	0.7	0.5	36.6	3.4	179	117	123	56	31.2%	17.4%	2.6%	16.9	2.4
CBRC0048	39	40	99	9.3	6.2	1.7	9.8	2.0	37.9	0.8	39	10.0	7.9	1.5	0.9	65.1	5.4	297	198	194	103	34.6%	16.6%	3.1%	20.0	3.0
CBRC0048	40	41	104	8.1	4.8	1.8	9.1	1.6	58.9	0.6	49	13.5	9.4	1.4	0.7	49.8	4.3	317	213	234	82	26.0%	19.6%	2.6%	19.3	2.6
CBRC0048	41	42	100	5.7	3.7	1.3	6.4	1.2	52.7	0.5	43	12.1	7.6	0.9	0.5	37.1	3.3	276	176	215	61	22.0%	19.9%	2.1%	21.7	3.3
CBRC0048	42	43	114	8.7	6.0	1.9	9.4	1.9	60.9	0.8	55	15.2	10.3	1.4	0.9	64.2	5.4	357	242	256	101	28.2%	19.7%	2.4%	24.2	3.2
CBRC0048	43	44	155	10.7	5.8	2.6	12.5	2.0	78.1	0.7	74	19.8	14.2	1.9	0.8	59.1	5.0	442	287	341	101	22.9%	21.1%	2.4%	28.5	4.2

Hole ID	Fro m (m)	To (m)	CeO2	Dy2O 3	Er20 3	Eu2O 3	Gd2O 3	Ho2O 3	La2O 3	Lu20 3	Nd2O 3	Pr60 11	Sm2O 3	Tb2O 3	Tm2O 3	Y2O3	Yb2O 3	TREO	TREO - Ce	LREO	HREO	% HREO	%NdP r	%Dy2 O3	Th ppm	U ppm
CBRC0048	44	45	116	8.3	4.7	2.0	9.8	1.6	62.7	0.6	55	15.6	10.9	1.4	0.6	46.1	4.1	339	223	260	79	23.3%	20.8%	2.4%	26.1	4.8
CBRC0048	45	46	72	5.8	3.1	1.6	6.7	1.1	56.4	0.4	40	11.8	7.6	1.0	0.4	27.4	2.8	238	166	187	50	21.2%	21.6%	2.5%	20.9	4.2
CBRC0048	46	47	144	9.0	4.3	2.5	11.1	1.6	74.7	0.5	65	18.0	12.2	1.6	0.6	37.6	3.7	386	242	314	72	18.8%	21.4%	2.3%	21.5	3.8
CBRC0048	47	48	130	9.1	4.8	2.2	10.9	1.7	73.4	0.6	58	16.5	11.4	1.6	0.7	39.8	4.3	365	235	290	76	20.7%	20.5%	2.5%	20.4	3.4
CBRC0048	48	49	90	5.2	3.0	1.3	5.9	1.0	43.9	0.4	38	10.7	7.1	0.9	0.4	24.5	2.9	235	145	190	46	19.4%	20.5%	2.2%	19.8	3.9
CBRC0048	49	50	75	3.7	2.4	0.9	4.4	0.8	34.6	0.4	30	8.5	5.4	0.6	0.4	20.6	2.5	190	115	153	37	19.3%	20.2%	1.9%	21.5	4.4
CBRC0048	50	51	84	3.1	2.0	0.9	4.1	0.6	36.4	0.3	31	9.2	5.5	0.6	0.3	16.5	2.2	197	113	166	31	15.6%	20.6%	1.6%	20.4	5.2
CBRC0048	51	52	81	4.1	2.4	1.1	4.9	0.8	36.4	0.4	32	9.1	6.2	0.7	0.4	20.3	2.5	202	121	165	38	18.6%	20.4%	2.0%	20.0	6.2
CBRC0048	52	53	368	34.1	22.8	5.7	31.2	7.3	108.6	2.8	108	27.6	25.8	5.2	3.1	200.8	19.4	971	603	638	332	34.2%	14.0%	3.5%	21.7	5.7
CBRC0048	53	54	345	21.6	11.0	5.0	25.5	3.9	117.0	1.3	116	30.2	24.8	3.8	1.5	99.8	9.5	816	471	633	183	22.4%	17.9%	2.7%	24.1	7.5
CBRC0048	54	55	146	10.8	6.9	2.2	11.3	2.2	65.7	1.0	59	16.0	11.4	1.8	1.0	68.1	6.4	410	264	298	112	27.3%	18.2%	2.6%	23.2	6.3
CBRC0048	55	56	124	9.3	5.8	1.9	9.7	1.9	54.5	0.8	48	13.2	9.4	1.5	0.8	56.0	5.4	342	218	249	93	27.2%	17.8%	2.7%	16.2	6.6
CBRC0048	56	57	139	10.2	6.3	2.2	11.4	2.1	67.8	0.9	59	16.3	11.9	1.7	0.9	64.0	5.8	399	261	294	106	26.4%	18.9%	2.6%	22.7	7.2
CBRC0049	17	18	129	6.1	3.7	1.7	7.0	1.2	57.5	0.5	54	15.6	9.7	1.1	0.5	35.3	3.5	327	198	266	61	18.6%	21.5%	1.9%	23.1	6.0
CBRC0049	18	19	181	10.1	6.0	2.7	11.7	2.0	116.5	0.8	87	25.5	15.7	1.8	0.8	57.6	5.5	524	343	425	99	18.8%	21.5%	1.9%	23.6	6.6
CBRC0049	19	20	180	11.3	6.3	3.0	13.1	2.2	93.5	0.8	88	24.7	16.5	2.0	0.8	59.9	5.5	508	328	403	105	20.7%	22.2%	2.2%	20.8	6.1
CBRC0049	20	21	190	13.0	7.3	3.2	14.8	2.5	94.0	0.9	90	25.1	17.3	2.3	1.0	70.7	6.5	538	348	416	122	22.7%	21.3%	2.4%	22.7	5.8
CBRC0049	21	22	150	12.6	6.9	2.7	13.7	2.4	78.7	0.8	71	19.3	13.5	2.1	0.9	67.9	6.0	448	298	332	116	25.9%	20.1%	2.8%	23.7	4.8
CBRC0049	22	23	358	25.2	11.9	7.1	32.7	4.3	249.0	1.3	194	53.0	36.3	4.6	1.5	113.4	9.5	1,102	744	890	212	19.2%	22.4%	2.3%	22.2	7.6
CBRC0049	23	24	126	7.5	4.4	1.7	8.4	1.5	69.2	0.5	48	13.8	9.1	1.3	0.6	42.9	3.8	339	213	266	73	21.4%	18.3%	2.2%	17.3	4.8
CBRC0049	24	25	205	15.6	8.7	3.3	16.8	3.0	117.1	1.1	98	26.5	17.9	2.6	1.2	94.3	7.7	619	413	465	154	24.9%	20.0%	2.5%	22.9	4.7
CBRC0049	25	26	138	9.0	5.1	1.9	9.8	1.7	67.8	0.6	55	15.1	10.5	1.5	0.7	53.4	4.5	374	237	286	88	23.6%	18.8%	2.4%	18.2	4.3
CBRC0049	26	27	127	10.1	6.6	1.7	9.6	2.1	49.3	0.8	48	12.6	9.3	1.5	0.9	69.4	5.9	355	228	246	109	30.7%	17.0%	2.9%	21.1	3.8
CBRC0050	16	17	231	6.5	3.2	2.0	9.3	1.1	95.3	0.3	80	23.4	12.8	1.3	0.4	31.9	2.6	501	270	443	59	11.7%	20.6%	1.3%	43.0	3.4
CBRC0050	17	18	150	5.0	2.6	1.4	6.1	0.9	65.6	0.3	47	13.4	8.1	0.9	0.3	26.2	2.4	331	181	285	46	14.0%	18.4%	1.5%	27.3	3.3
CBRC0050	18	19	128	5.1	2.7	1.4	6.0	0.9	55.2	0.4	43	12.3	7.5	0.9	0.4	27.1	2.6	293	165	245	48	16.2%	18.8%	1.7%	21.9	3.7
CBRC0050	19	20	176	6.9	3.8	1.9	8.1	1.3	89.9	0.5	61	17.0	10.2	1.2	0.5	39.3	3.5	421	245	354	67	15.9%	18.4%	1.6%	20.7	3.8
CBRC0050	20	21	142	6.5	3.9	1.8	7.4	1.3	70.2	0.6	52	14.1	8.7	1.1	0.6	41.2	3.9	355	213	287	68	19.2%	18.6%	1.8%	18.1	2.7

Hole ID	Fro m (m)	To (m)	CeO2	Dy20 3	Er20 3	Eu2O 3	Gd2O 3	Ho2O 3	La2O 3	Lu20 3	Nd2O 3	Pr60 11	Sm2O 3	Tb2O 3	Tm2O 3	Y2O3	Yb2O 3	TREO	TREO - Ce	LREO	HREO	% HREO	%NdP r	%Dy2 O3	Th ppm	U ppm
CBRC0050	51	52	138	5.4	3.2	1.6	6.5	1.0	62.7	0.5	51	13.4	8.6	1.0	0.5	31.0	3.2	327	189	274	54	16.4%	19.6%	1.7%	17.9	3.1
CBRC0050	52	53	336	9.5	5.0	3.1	12.7	1.7	150.8	0.7	123	35.5	18.7	1.7	0.7	49.8	4.7	754	417	664	90	11.9%	21.0%	1.3%	20.0	4.7
CBRC0050	53	54	142	7.3	4.2	1.8	8.4	1.4	60.7	0.6	49	13.6	8.8	1.3	0.6	40.8	4.1	344	202	274	70	20.5%	18.1%	2.1%	21.4	3.9
CBRC0050	54	55	168	5.5	3.4	1.7	7.1	1.1	79.4	0.5	63	17.5	10.0	1.0	0.5	35.7	3.1	397	229	338	60	15.0%	20.1%	1.4%	17.3	2.5
CBRC0051	15	16	287	11.6	4.6	3.9	15.1	1.9	109.8	0.5	114	33.9	22.1	2.2	0.6	40.0	3.5	651	364	567	84	12.9%	22.7%	1.8%	23.3	10.9
CBRC0051	16	17	342	16.9	7.1	4.7	20.9	2.9	153.9	0.7	139	39.7	25.7	3.1	0.9	65.4	5.4	828	486	700	128	15.5%	21.6%	2.0%	30.2	8.3
CBRC0051	17	18	149	8.8	4.2	2.1	9.9	1.6	69.4	0.5	58	16.4	11.0	1.5	0.6	40.6	3.5	377	228	303	73	19.5%	19.8%	2.3%	23.6	6.1
CBRC0051	18	19	198	11.3	5.8	3.1	12.8	2.0	193.0	0.8	82	27.2	16.2	2.0	0.8	53.0	5.3	613	415	516	97	15.8%	17.8%	1.8%	22.8	9.1
CBRC0051	19	20	883	43.2	18.3	11.9	51.4	7.5	483.1	1.6	312	91.9	58.4	7.5	2.2	177.6	12.5	2,162	1,279	1,828	334	15.4%	18.7%	2.0%	31.8	13.4
CBRC0051	20	21	278	15.4	9.6	3.5	16.7	3.3	130.9	1.3	101	29.5	18.0	2.5	1.3	113.0	8.1	732	454	557	175	23.9%	17.9%	2.1%	28.1	3.6
CBRC0051	21	22	229	9.1	5.1	2.2	10.5	1.8	103.0	0.7	72	21.2	12.5	1.5	0.7	56.7	4.4	531	302	438	93	17.5%	17.6%	1.7%	27.2	4.2
CBRC0051	22	23	125	7.7	4.2	2.1	9.2	1.5	83.6	0.5	60	17.6	11.1	1.3	0.6	44.9	3.6	373	248	298	76	20.3%	20.9%	2.1%	22.7	2.3
CBRC0052	18	19	172	6.2	3.2	1.8	7.5	1.1	60.3	0.4	57	15.7	10.1	1.1	0.5	29.9	2.8	369	197	315	54	14.8%	19.6%	1.7%	23.3	6.0
CBRC0052	19	20	212	8.7	4.4	2.4	10.4	1.6	85.1	0.5	74	20.6	13.2	1.6	0.6	43.8	3.6	482	271	405	78	16.1%	19.6%	1.8%	30.1	4.8
CBRC0052	20	21	210	9.1	4.6	2.6	11.3	1.6	94.4	0.5	82	23.1	14.3	1.7	0.6	45.5	3.6	505	295	424	81	16.1%	20.9%	1.8%	37.3	4.8
CBRC0052	21	22	190	8.9	4.3	2.4	10.7	1.5	91.6	0.5	72	20.4	13.0	1.6	0.6	44.4	3.4	466	275	387	78	16.8%	19.8%	1.9%	30.0	4.0
CBRC0052	22	23	210	9.8	5.2	2.6	11.8	1.8	101.2	0.6	83	23.3	15.0	1.8	0.7	53.0	4.0	524	314	433	91	17.4%	20.3%	1.9%	33.6	3.8
CBRC0052	23	24	207	10.4	5.4	2.7	11.8	1.9	93.6	0.6	80	21.8	14.4	1.8	0.8	54.4	4.4	511	304	417	94	18.4%	20.0%	2.0%	30.0	5.3
CBRC0052	24	25	171	9.8	5.2	2.5	10.8	1.8	77.0	0.6	67	18.5	12.5	1.7	0.7	53.2	4.1	437	266	346	91	20.7%	19.6%	2.2%	23.5	5.5
CBRC0052	25	26	182	9.8	5.2	2.4	10.7	1.8	78.6	0.6	70	19.2	13.0	1.7	0.7	52.1	4.2	452	270	363	89	19.7%	19.6%	2.2%	24.4	5.4
CBRC0052	26	27	201	9.7	5.5	2.4	10.7	1.9	84.7	0.7	70	19.2	12.5	1.6	0.8	57.8	4.5	483	282	387	95	19.8%	18.5%	2.0%	23.6	4.9
CBRC0052	27	28	184	9.2	5.2	2.2	10.2	1.8	80.4	0.6	68	18.8	12.3	1.6	0.7	52.7	4.2	452	268	364	88	19.5%	19.3%	2.0%	24.3	4.9
CBRC0052	28	29	179	8.5	4.7	2.1	9.2	1.6	85.3	0.6	67	18.7	11.7	1.5	0.7	48.8	4.1	443	264	362	82	18.4%	19.3%	1.9%	20.8	4.4
CBRC0052	29	30	189	9.8	5.4	2.5	11.0	1.9	84.1	0.7	71	19.5	13.0	1.7	0.8	56.5	4.7	472	283	377	95	20.1%	19.3%	2.1%	24.3	4.6
CBRC0052	30	31	107	7.8	4.7	1.7	8.0	1.6	56.5	0.7	45	11.7	8.7	1.3	0.7	50.1	4.3	310	203	229	81	26.1%	18.3%	2.5%	17.9	4.7
CBRC0052	31	32	224	9.6	5.4	2.5	11.1	1.8	99.5	0.8	71	19.5	12.8	1.7	0.8	57.6	4.9	523	299	427	96	18.4%	17.3%	1.8%	23.8	6.2
CBRC0052	32	33	160	8.4	4.6	2.1	9.8	1.5	75.3	0.6	65	17.6	11.9	1.5	0.7	50.3	4.2	413	254	330	84	20.3%	20.0%	2.0%	26.2	5.9
CBRC0052	33	34	114	7.4	4.5	1.7	8.0	1.5	61.0	0.7	51	13.8	9.7	1.2	0.7	44.0	4.2	323	210	250	74	22.8%	20.1%	2.3%	20.7	5.8

Hole ID	Fro m (m)	To (m)	CeO2	Dy2O 3	Er20 3	Eu2O 3	Gd2O 3	Ho2O 3	La20 3	Lu2O 3	Nd2O 3	Pr60 11	Sm2O 3	Tb2O 3	Tm2O 3	Y2O3	Yb2O 3	TREO	TREO - Ce	LREO	HREO	% HREO	%NdP r	%Dy2 O3	Th ppm	U ppm
CBRC0052	34	35	125	9.3	5.9	1.9	9.5	1.9	66.1	0.9	55	15.1	10.5	1.5	0.9	63.9	5.5	373	248	272	101	27.1%	18.9%	2.5%	23.2	5.0
CBRC0052	35	36	132	7.6	4.5	1.8	8.5	1.5	67.0	0.7	58	15.4	10.1	1.3	0.7	46.4	4.1	359	227	282	77	21.5%	20.3%	2.1%	24.9	4.1
CBRC0052	36	37	163	11.1	6.2	2.4	12.0	2.1	84.8	0.9	66	17.6	12.5	1.9	0.9	64.6	5.5	452	289	345	108	23.8%	18.6%	2.5%	24.3	4.9
CBRC0052	37	38	184	15.1	9.5	3.0	15.5	3.1	102.2	1.4	78	20.5	15.0	2.5	1.4	107.4	8.4	567	383	400	167	29.5%	17.4%	2.7%	26.9	5.6
CBRC0052	38	39	110	8.4	5.0	1.6	8.7	1.7	55.4	0.8	47	12.8	9.5	1.4	0.8	52.4	4.8	320	210	235	86	26.7%	18.7%	2.6%	29.5	4.5
CBRC0052	39	40	132	8.3	4.9	1.8	9.5	1.6	68.4	0.7	57	15.4	10.3	1.4	0.7	51.5	4.3	368	236	283	85	23.1%	19.7%	2.3%	27.4	4.9
CBRC0052	40	41	119	9.8	6.3	2.0	10.2	2.1	59.9	0.9	51	13.8	10.3	1.6	0.9	67.8	5.5	361	242	254	107	29.7%	18.0%	2.7%	24.3	3.6
CBRC0052	41	42	129	15.3	11.4	2.3	12.7	3.5	72.1	1.9	60	15.9	11.4	2.2	1.8	127.4	10.9	478	349	289	189	39.6%	15.9%	3.2%	23.7	4.9
CBRC0053	13	14	160	6.0	2.9	1.3	7.6	1.0	63.6	0.4	60	16.9	10.3	1.1	0.4	28.0	2.7	362	202	311	51	14.2%	21.2%	1.7%	24.3	3.1
CBRC0053	14	15	214	8.2	4.5	2.1	10.4	1.5	85.9	0.6	81	22.7	13.9	1.5	0.6	43.0	4.1	494	280	418	76	15.5%	21.0%	1.7%	25.7	2.9
CBRC0053	15	16	138	5.1	2.8	1.5	6.5	1.0	55.2	0.4	53	14.9	9.0	0.9	0.4	26.8	2.7	318	180	270	48	15.1%	21.2%	1.6%	20.4	4.2
CBRC0053	16	17	145	5.3	2.8	1.4	6.7	1.0	59.4	0.4	55	15.8	9.6	1.0	0.4	26.9	2.8	334	189	286	49	14.6%	21.2%	1.6%	22.3	4.1
CBRC0053	17	18	250	8.7	5.1	2.4	10.7	1.6	102.3	0.8	95	27.2	16.2	1.6	0.8	43.0	5.3	571	321	490	80	14.0%	21.4%	1.5%	26.0	5.1
CBRC0053	18	19	261	11.0	6.7	2.8	13.1	2.1	101.6	1.0	106	29.1	18.9	1.9	1.1	55.9	7.0	619	358	516	103	16.6%	21.8%	1.8%	30.1	7.1
CBRC0053	19	20	175	12.1	7.3	2.2	13.2	2.4	74.5	1.0	74	19.5	14.4	2.1	1.1	74.9	6.6	481	306	358	123	25.6%	19.5%	2.5%	27.5	6.5
CBRC0053	20	21	140	8.9	6.6	1.4	9.0	2.0	64.5	1.1	55	15.0	9.8	1.5	1.1	63.7	7.1	387	246	284	102	26.5%	18.0%	2.3%	25.0	4.3
CBRC0053	21	22	131	5.1	2.5	1.0	6.8	0.9	59.1	0.4	50	14.0	8.8	1.0	0.4	26.0	2.4	310	179	263	46	15.0%	20.8%	1.6%	27.0	3.0
CBRC0053	22	23	159	5.3	2.6	1.0	8.2	0.9	73.0	0.4	60	16.7	10.4	1.3	0.3	26.0	2.4	367	208	319	49	13.2%	20.8%	1.5%	28.8	3.1
CBRC0053	23	24	175	5.6	2.7	1.0	8.5	1.0	80.1	0.4	65	18.4	11.3	1.2	0.4	26.8	2.6	400	225	350	50	12.6%	20.9%	1.4%	32.3	3.1
CBRC0053	24	25	136	4.5	2.6	0.9	6.5	0.9	62.9	0.5	52	14.5	8.9	0.9	0.4	24.9	2.8	319	183	275	45	14.0%	21.0%	1.4%	26.3	2.6
CBRC0054	18	19	509	4.9	2.5	1.3	5.4	0.9	192.8	0.4	66	26.6	9.1	0.8	0.4	21.0	2.5	843	334	803	40	4.7%	10.9%	0.6%	53.8	11.2
CBRC0054	19	20	224	1.9	1.3	0.3	1.4	0.4	13.2	0.3	11	3.3	1.9	0.3	0.2	9.4	1.8	270	46	253	17	6.4%	5.1%	0.7%	37.4	10.5
CBRC0054	20	21	249	2.9	1.7	0.6	2.8	0.5	25.2	0.3	21	6.2	3.8	0.5	0.3	13.9	2.0	330	82	305	26	7.7%	8.2%	0.9%	47.9	19.2
CBRC0054	21	22	431	11.6	5.4	3.0	14.7	2.1	148.9	0.7	123	36.3	20.8	2.1	0.8	51.3	4.9	857	426	760	97	11.3%	18.6%	1.4%	72.5	22.5
CBRC0054	22	23	918	9.6	4.4	2.7	13.0	1.7	153.4	0.5	107	31.8	17.6	1.7	0.6	43.0	3.7	1,309	391	1,229	81	6.2%	10.6%	0.7%	68.7	31.1
CBRC0054	23	24	677	8.5	4.2	2.1	9.5	1.5	63.8	0.6	65	18.6	12.9	1.5	0.6	35.6	4.0	906	229	838	68	7.5%	9.3%	0.9%	60.4	25.2
CBRC0054	24	25	488	11.2	5.6	3.1	14.6	2.1	130.7	0.8	115	32.8	20.5	2.0	0.8	51.9	5.3	885	397	787	97	11.0%	16.8%	1.3%	46.5	14.4
CBRC0054	25	26	692	26.6	13.0	7.5	33.9	4.8	269.3	1.7	261	75.0	47.2	4.7	1.9	115.2	11.7	1,566	874	1,345	221	14.1%	21.5%	1.7%	54.0	15.7

Hole ID	Fro m (m)	To (m)	CeO2	Dy2O 3	Er20 3	Eu2O 3	Gd2O 3	Ho2O 3	La2O 3	Lu2O 3	Nd2O 3	Pr60 11	Sm2O 3	Tb2O 3	Tm2O 3	Y2O3	Yb2O 3	TREO	TREO - Ce	LREO	HREO	% HREO	%NdP r	%Dy2 O3	Th ppm	U ppm
CBRC0054	26	27	390	75.3	35.8	21.0	99.8	13.4	716.1	4.0	698	195.9	126.0	14.0	4.9	353.6	28.9	2,776	2,386	2,125	651	23.4%	32.2%	2.7%	54.4	16.4
CBRC0054	27	28	308	25.5	15.3	5.4	33.1	5.4	356.9	1.7	181	50.7	29.8	4.3	2.0	203.9	10.9	1,234	926	926	308	24.9%	18.8%	2.1%	51.5	15.6
CBRC0054	28	29	228	8.6	4.2	2.3	10.6	1.6	111.9	0.5	79	23.3	13.7	1.6	0.6	42.1	3.5	531	303	455	76	14.2%	19.3%	1.6%	42.9	10.1
CBRC0054	29	30	395	17.8	9.0	4.5	22.2	3.3	208.8	1.1	159	45.7	27.6	3.2	1.3	90.6	7.4	996	601	836	160	16.1%	20.6%	1.8%	89.5	15.8
CBRC0054	30	31	329	12.2	5.8	3.3	15.6	2.2	141.1	0.7	116	34.1	20.8	2.3	0.8	56.6	4.7	745	416	641	104	14.0%	20.2%	1.6%	71.6	15.7
CBRC0054	31	32	302	14.9	7.0	3.8	18.3	2.6	167.5	0.9	129	36.6	22.7	2.6	1.0	74.2	5.6	789	487	658	131	16.6%	21.0%	1.9%	57.0	15.0
CBRC0054	32	33	295	12.0	5.6	3.3	15.2	2.1	144.4	0.6	112	31.9	19.7	2.1	0.8	57.8	4.6	707	412	603	104	14.7%	20.3%	1.7%	47.4	12.3
CBRC0054	33	34	190	9.5	5.2	2.5	10.4	1.8	92.3	0.7	67	19.3	12.3	1.6	0.8	53.6	5.0	473	282	382	91	19.3%	18.3%	2.0%	27.9	13.6
CBRC0054	34	35	177	7.8	4.4	2.0	8.4	1.5	88.4	0.7	57	17.0	10.0	1.3	0.7	43.2	4.3	424	247	350	74	17.5%	17.5%	1.8%	23.0	14.0