THIS ANNOUNCEMENT CONTAINS INSIDE INFORMATION FOR THE PURPOSES OF ARTICLE 7 OF REGULATION 2014/596/EU WHICH IS PART OF DOMESTIC UK LAW PURSUANT TO THE MARKET ABUSE (AMENDMENT) (EU EXIT) REGULATIONS (SI 2019/310) ("UK MAR"). UPON THE PUBLICATION OF THIS ANNOUNCEMENT, THIS INSIDE INFORMATION (AS DEFINED IN UK MAR) IS NOW CONSIDERED TO BE IN THE PUBLIC DOMAIN.

NOT FOR RELEASE, PUBLICATION OR DISTRIBUTION, IN WHOLE OR IN PART, DIRECTLY OR INDIRECTLY IN OR INTO THE UNITED STATES, AUSTRALIA, CANADA, JAPAN, THE REPUBLIC OF SOUTH AFRICA OR ANY OTHER JURISDICTION WHERE TO DO SO WOULD CONSTITUTE A VIOLATION OF THE RELEVANT LAWS OF SUCH JURISDICTION.

6 April 2022

Cobra Resources plc ("Cobra" or the "Company")

Wudinna Project Update

Re-Analysis of 2020 Drilling Confirms More Rare Earth Mineralisation Above Gold Resources

Validates Potential for Rapid Expansion of Defined Rare Earth Mineralisation Footprint

Cobra, a gold and rare earth exploration company focused on the Wudinna Gold Project in South Australia, announces results from the re-analysis of 15 drillholes from Reverse Circulation ("RC") drilling completed in 2020 at Baggy Green, Barns, and White Tank. Drillholes were re-analysed for lanthanides following the Company's recent rare earth discovery at Clarke.

- Rare Earth Elements ("REE") have been intersected in all drillholes confirming the potential for desirable clay hosted, Ion Adsorption ("IAC") mineralisation within the saprolite horizon above and proximal to existing gold resources at Baggy Green, Barns, and White Tank
- At a 350 ppm Total Rare Earth Oxide ("TREO") cut-off, all holes resulted in significant intersections where the average grade is 623 ppm TREO over an average true width intersection of 11m. Spatially, this demonstrates the significant expansion potential of thick zones of REE mineralisation
- At a 500 ppm TREO cut-off, 13 (or 81%) of the holes returned multiple significant intersections per hole, where the average grade is 748 ppm TREO over an average true width intersection of 5.3m. Discrete, higher-grade zones exist within intersections, demonstrating the potential to identify zones of higher grade
- The quantity of high-value magnet rare earths is consistent with results from the previously reported Clarke discovery, with the combined average neodymium/praseodymium quantity being 20.2% of the TREO, and dysprosium equating to 1.8% of the TREO
- The results demonstrate the potential to significantly increase the defined footprint of Rare Earth Mineralisation through the re-analysis of historical drillholes. Further results from 38 holes at Clarke, and a further 66 holes from Baggy Green, are expected this month

Rupert Verco, CEO of Cobra, commented:

"These results are defining a unique, high-value mineral occurrence. To have potentially lonic Adsorption Clay hosted Rare Earth Mineralisation overlaying a defined JORC gold mineral resource of 211,000 ounces is a compelling value addition.

The critical nature of magnet rare earths to global decarbonisation, coupled with the long-term fiscal stability of gold, enables Cobra to define a globally unique mineral inventory in a stable and world-class mining jurisdiction, that puts us in a very enviable position.

We are poised to capitalise on this transformational discovery by expanding the footprint of rare earth mineralisation through low-cost re-analysis, whilst metallurgical leachability test work is progressing.

The team are working towards a fully funded field programme that is designed to further expand the rare earth footprint, add additional ounces to the existing gold resource, and test potentially significant IOCG targets. It's an exciting time for Cobra."

Summary of Results:

- REE mineralisation has now been intersected over 2.4 km from Baggy Green to Clarke outstanding re-analyses shall define the mineralisation continuity
- The highest grade 1m downhole intersect was located at the White Tank gold resource, where CBRC0040 intersected 1m at 1,931 ppm TREO from just 13m, warranting further re-analysis of historically drilled holes from White Tank and Barns
- The concentration of radioactive elements is low, a benefit of IAC style REE mineralisation, with the average intersection concentrations of thorium and uranium being 21 ppm and 5.9 ppm respectively
- Results demonstrate the regional potential for saprolite hosted rare earths

Intersections from drillholes over and proximal to the Baggy Green 94,000-ounce gold resource include:

- CBRC0005 intersected a true width of 16.9m at 738 ppm TREO from 16.9m, including 5.6m at 1,105 ppm TREO from 19.7m
- CBRC0020 intersected 16.9m at 724 ppm TREO from 32.9m, including 9.4m at 881 ppm TREO from 32.9m. This is above the previously reported gold intersection of 1m at 3.73 g/t from 63m
- CBRC0022 intersected 16.9m at 557 ppm TREO from 18.8m, including 2.8 m at 1007 ppm TREO from 28.2m
- CBRC0003 intersected 17.9m at 562 ppm TREO from 12.2m, including 5.6m at 859 ppm TREO from 22.6m

- CBRC0010 intersected 0.9m at 805 ppm TREO from 10.9m, and 20.8m at 586 ppm TREO from 16.3m, including 8.2m at 706 ppm TREO from 22.7m
- CBRC0016 intersected 9.5m at 611 ppm TREO from 24.2m, including 3.5m at 1000 ppm TREO from 24.2m
- CBRC0017 intersected 14.8m at 598 ppm TREO from 29.5m, including 3.9m at 984 ppm TREO from 31.5m
- CBRC0019 intersected 16.5m at 524 ppm TREO from 25.1m, including 2.6m at 975 ppm TREO from 25.1m

Intersections from the two drillholes at the Barns 104,000-ounce gold resource include:

- CBRC0028 intersected 0.9m at 825 ppm TREO from 11.2m above the previously reported gold intersections of 1m at 1.01 g/t gold from 107m, and 1m at 1.2 g/t gold from 123m, as well as 2m at 2.7 g/t gold from 138m, and 14 m at 1.1 g/t gold from 147m
- CBRC0034 intersected 7.8m at 536 ppm TREO from 22.5m above the previously reported gold intersection of 1m at 3.73 g/t gold from 163m

A single hole proximal to the 13,000-ounce gold resource at White Tank:

CBRC0040 intersected 1.7m at 1,217 ppm TREO from 10.4m, and 8.7m at 460 ppm TREO from 29.4m

¹Rare earth results reported as calculated true width intersects ²Gold results reported as downhole intersects

These results validate the Company's approach to drillhole re-analysis. Further holes from Barns and White Tank are being identified and submitted for re-analysis in the next phase which is underway.

Enquiries:

Cobra Resources plc Rupert Verco (Australia) Dan Maling (UK)	via Vigo Consulting +44 (0)20 7390 0234
SI Capital Limited (Joint Broker) Nick Emerson Sam Lomanto	+44 (0)1483 413 500
Peterhouse Capital Limited (Joint Broker) Duncan Vasey Lucy Williams	+44 (0)20 7469 0932

Vigo Consulting (Financial Public Relations) Ben Simons Charlie Neish Kendall Hill

The person who arranged for the release of this announcement was Rupert Verco, CEO of the Company.

About Cobra

Cobra's Wudinna Project is located in the Gawler Craton which is home to some of the largest IOCG discoveries in Australia including Olympic Dam, as well as Prominent Hill and Carrapateena. Cobra's Wudinna tenements contain extensive orogenic gold mineralisation and are characterised by potentially open-pitable, high-grade gold intersections, with ready access to nearby infrastructure. Recent drilling has discovered Rare Earth Mineralisation proximal to and above gold mineralisation. The grades, style of mineralogy and intercept widths are highly desirable. In addition, Cobra has over 22 orogenic gold prospects, with grades of between 16 g/t up to 37.4 g/t gold outside of the current 211,000 oz JORC Mineral Resource Estimate, as well as one copper-gold prospect, and five IOCG targets.

Competent Persons Statement

Information and data presented within this announcement has been compiled by Mr Robert Blythman, a Member of the Australian Institute of Geoscientists ("MAIG"). Mr Blythman is a Consultant to Cobra Resources Plc and has sufficient experience, which is relevant to the style of mineralisation, deposit type and to the activity which he is undertaking to qualify as a Competent Person defined by the 2012 Edition of the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves (the "JORC" Code). This includes 10 years of Mining, Resource Estimation and Exploration relevant to the style of mineralisation.

Information in this announcement has been assessed by Mr Rupert Verco, a Fellow of the Australasian Institute of Mining and Metallurgy ("FAusIMM"). Mr Verco an employee of Cobra Resources Plc has more than 15 years relevant industry experience, which is relevant to the style of mineralisation, deposit type and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves (the "JORC" Code). This includes 10 years of Mining, Resource Estimation and Exploration relevant to the style of mineralisation.

Information in this announcement relates to exploration results that have been reported in the following announcements:

"Wudinna Project Update – Northern Drillholes at Clarke Intersect Additional Gold Mineralisation, Additional Rare Earth Interceptions Directly Above Gold Zones", dated 7 February 2022 "Wudinna Project Update – Clarke Gold Assay Results", dated 3 December 2020 "Wudinna Project Update – Barns / White Tank Gold Assay Results", dated 21 January 2021

Discussion

In February this year, Cobra announced it had identified REE mineralisation coincident with intersected gold mineralisation at the Clarke prospect which lies 1.75 km North of the Baggy Green deposit that forms part of the Wudinna Project's 211,000 oz Mineral Resource Estimate.

17 drillholes from the Company's 2020 resource extensional drilling programme were selected for the re-analysis of lanthanide elements as a first pass to determine the potential occurrence of REE mineralisation proximal to the camp scale gold occurrences. All 15 holes reported (results for two holes remains outstanding) have intersected REE mineralisation within the kaolin and smectite clays that occur within the saprolite horizon, confirming the REE occurrence extends to all defined gold occurrences that contribute to the Wudinna Project's Mineral Resource Estimate.

Re-analysis of a further 38 holes from Clarke and 66 holes from Baggy Green is currently underway to determine both the continuity and lateral extent of REE mineralisation. Once these holes are received, over 4.2 km² will have been analysed for REE mineralisation.

Next Steps

Further pulp samples retained from historic drilling at Barns and White Tank will be selected for lanthanide re-analysis to determine the extent of REE mineralisation at these locations.

Work is underway to define catalysts of REE enrichment of basement granites and the secondary mechanisms that promote Ion Adsorption within the saprolite lithology. Work to date supports associations to the Hiltaba deformation event that is coeval the project's gold mineralisation.

Additional pulp samples from historic drillholes across several regional targets are in the process of being identified and recovered for re-analysis.

21 REE samples from the Clarke 2021 drill programme are currently being tested by the Australian Nuclear Science and Technology Organisation ("ANSTO") to determine the metallurgical recovery of REEs through standard desorption conditions. Once these results are received and reported, further testing will be devised to optimise REE recoveries. The Company is in discussion with several academic and technical teams to devise the best option for progression.

Both Rotary Air Blast ("RAB") and RC drilling programmes are being designed and the appropriate regulatory approvals are being sought to:

- Test extensions to gold and REE mineralisation at Clarke
- Drill test priority gold and REE targets
- Test resource extension targets
- Maiden drill test IOCG targets
- Contribute to a gold resource update, and enable a maiden REE resource estimation

Significant intersections from the re-analyses include:

Table 1: Significant rare earth oxide intercepts from lanthanide re-analysis, reported as downhole andtrue width.1

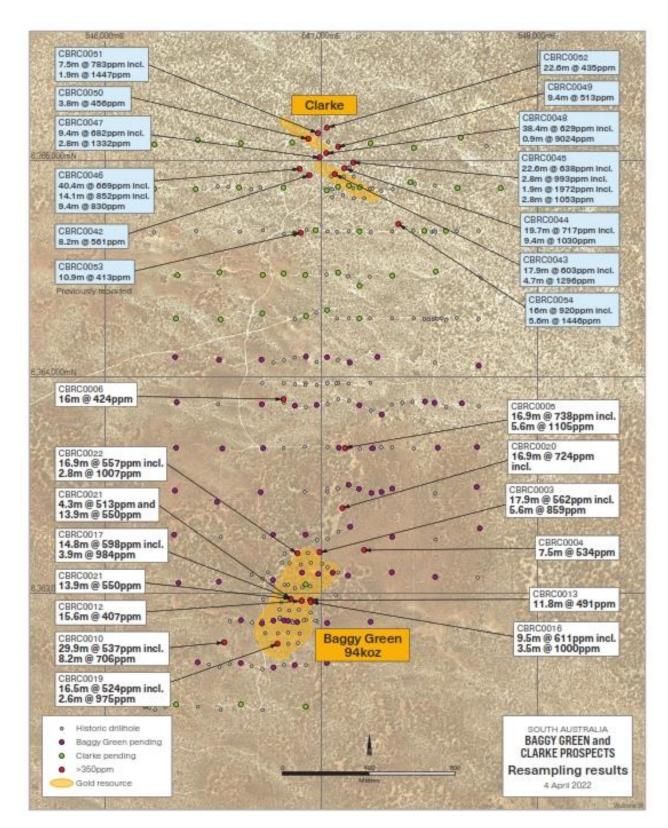

BHID	DH From	DH To	DH Intercept	Depth from	True width	TREO (ppm)		odymium		dymium		rbium		prosium
51115	(m)	(m)	(m)	Surface	(m)		Pr	6011	Nd2O3 Tb4O7			Dy2O3		
							ppm	% TREO	ppm	% TREO	ppm	% TREO	ppm	% TREO
CBRC0003	13	32	19	12.2	17.9	562	25	4.5%	96	17.0%	2	0.3%	11	2.0%
inc	24	30	6	22.6	5.6	859	36	4.2%	147	17.1%	4	0.4%	21	2.4%
CBRC0004	31	39	8	29.1	7.5	534	24	4.5%	93	17.3%	2	0.4%	12	2.3%
CBRC0005	18	36	18	16.9	16.9	738	33	4.5%	123	16.7%	3	0.4%	14	2.0%
inc	21	27	6	19.7	5.6	1105	52	4.7%	199	18.0%	4	0.4%	22	2.0%
CBRC0006	32	49	17	30.1	16.0	424	18	4.3%	62	14.7%	1	0.3%	7	1.7%
CBRC0010	12	13	1	10.9	0.9	805	41	5.1%	113	14.0%	1	0.1%	4	0.4%
and	18	41	23	16.3	20.8	586	26	4.5%	96	16.4%	2	0.4%	13	2.3%
inc	25	34	9	22.7	8.2	706	31	4.4%	115	16.2%	3	0.4%	18	2.6%
CBRC0012	30	48	18	26.0	15.6	407	18	4.4%	71	17.4%	2	0.5%	12	2.9%
CBRC0013	20	32	12	19.7	11.8	491	21	4.2%	79	16.1%	2	0.4%	12	2.5%
CBRC0016	28	39	11	24.2	9.5	611	24	3.9%	101	16.5%	3	0.5%	20	3.2%
inc	28	32	4	24.2	3.5	1000	40	4.0%	175	17.5%	6	0.6%	33	3.3%
CBRC0017	30	45	15	29.5	14.8	598	26	4.3%	103	17.2%	3	0.4%	15	2.5%
inc	32	36	4	31.5	3.9	984	46	4.7%	190	19.3%	4	0.4%	24	2.4%
CBRC0019	29	48	19	25.1	16.5	524	24	4.7%	78	14.8%	1	0.3%	8	1.5%
inc	29	32	3	25.1	2.6	975	46	4.7%	141	14.5%	3	0.3%	15	1.5%
CBRC0020	35	53	18	32.9	16.9	724	32	4.4%	114	15.7%	2	0.3%	11	1.5%
inc	35	45	10	32.9	9.4	881	42	4.8%	147	16.7%	2	0.2%	9	1.0%
CBRC0022	20	38	18	18.8	16.9	557	26	4.7%	82	14.7%	1	0.2%	6	1.1%
inc	30	33	3	28.2	2.8	1007	49	4.9%	176	17.5%	3	0.3%	13	1.3%
CBRC0028	12	13	1	11.2	0.9	825	36	4.4%	102	12.3%	1	0.1%	4	0.5%
CBRC0034	26	35	9	22.5	7.8	536	22	4.1%	63	11.7%	1	0.1%	4	0.7%
CBRC0040	12	14	2	10.4	1.7	1217	76	6.2%	194	16.0%	2	0.2%	11	0.9%
and	34	44	10	29.4	8.7	460	21	4.6%	80	17.5%	2	0.4%	11	2.4%
inc	34	36	2	29.4	1.7	827	42	5.1%	166	20.0%	3	0.4%	18	2.2%

 Table 2: Previously reported gold intersections²

Hole ID	From	То	Interval	Au (g/t)
	107	108	1	1.01
	123	124	1	1.17
CBRC0028	138	140	2	2.74
	147	161	14	1.08
CBRC0020	62	63	1	3.73
CBRC0034	163	164	1	2.02

¹ Drilled in 2020, re-analysed for REEs

² Reported in January 2021

Figure 1: Re-analyses results from the Baggy Green Prospect

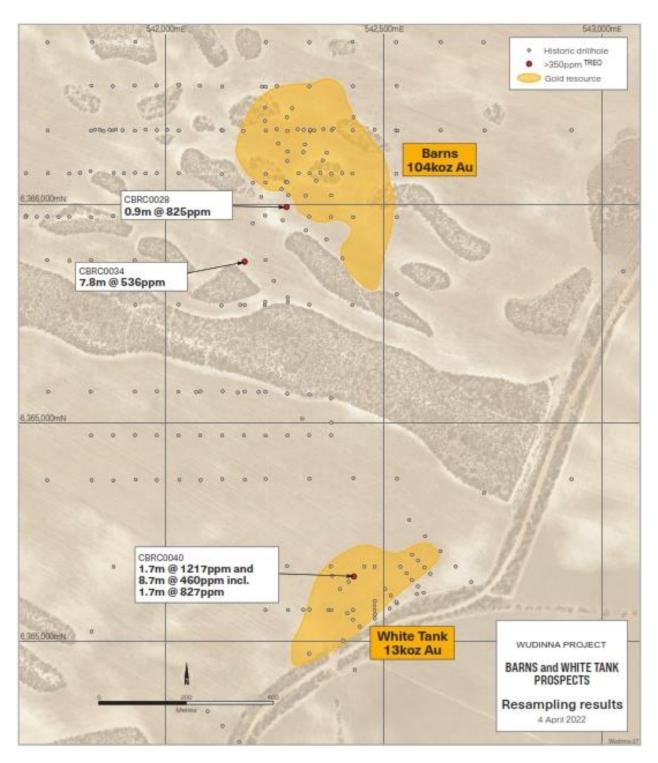


Figure 2: Reanalysis results from Barns and White Tank

Location	Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth
	CBRC0003	546,994	6,363,191	132	158	-70	180
	CBRC0004	547,200	6,363,200	128	90	-70	135
	CBRC0005	547,113	6,363,671	125	123	-70	225
	CBRC0006	546,827	6,363,896	127	158	-70	45
	CBRC0010	546,552	6,362,774	134	153	-65	90
	CBRC0012	546,911	6,362,968	136	177	-60	195
Baggy Green	CBRC0013	546,952	6,362,969	135	166	-80	0
	CBRC0016	546,952	6,362,965	135	141	-60	195
	CBRC0017	546,861	6,362,977	137	153	-80	0
	CBRC0019	546,799	6,362,768	131	93	-60	180
	CBRC0020	547,100	6,363,398	130	135	-70	45
	CBRC0021	546,861	6,362,974	137	177	-60	180
	CBRC0022	546,892	6,363,184	137	165	-70	180
Darne	CBRC0028	542,278	6,365,996	128	173	-70	90
Barns	CBRC0034	542,181	6,365,871	130	189	-60	90
White Tank	CBRC0040	542,432	6,365,150	132	148	-60	90

Table 3: Drillhole collar details for all reported drillholes

Appendix 1: JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Sampling during Cobra Resources' 2020 RC drilling programme was obtained through RC drilling methods. Historic RC and RAB drilling methods have been employed at Barns, White Tank, Clarke and Baggy Green prospects since 2000. Rotary air-core drilling occurred earlier in 2021 and was used to aid in the programme design but have not been used for grade estimations or defining results that are reported in this announcement. Samples were collected via a Metzke cone splitter mounted to the cyclone. 1m samples were managed through chute and butterfly valve to produce a 2-4 kg sample. Samples were taken from the point of collar, but only samples from the commencement of saprolite were selected for analysis. Samples were initially submitted to ALS Laboratory Services Pty Ltd ("ALS") in Adelaide, South Australia for Fire Assay (Au) and multi-element analysis. Pulps were submitted to the Genalysis Intertek Laboratories, Adelaide, pulps were re-pulverised and re-analysed for lanthanides.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 2020 RC Drilling was undertaken by Hagstrom Drilling using an Austrex AC/RC rig using a 140 mm bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have 	 Sample recovery was generally good with water being intersected in 10% of the drilled holes. All samples were recorded for sample type, quality and contamination potential and entered within a sample log. In general, sample recoveries were good with 35-50 kg for each one metre interval being recovered.

	occurred due to preferential loss/gain of fine/coarse material.	 No relationships between sample recovery and grade have been identified.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource	• All drill samples were logged by an experienced geologist at the time of drilling. Lithology, colour, weathering and moisture were documented.
	estimation, mining studies and metallurgical studies.	All drilled metres were logged.
	Whether logging is qualitative or	Logging is generally qualitative in nature.
	quantitative in nature. Core (or costean, channel, etc) photography.	 All RC drill metres have been geologically logged.
	• The total length and percentage of the relevant intersections logged.	
Sub-sampling techniques and	• If core, whether cut or sawn and whether quarter, half or all core taken.	Sample compositing consisted of only contiguous 1m drill samples. Samples upon a private of the same seliter of the second seliter.
sample preparation	' . It non ooro whothor rittlad tubo	were split using an inverted cone splitter.Additional sub-sampling was performed
		through the preparation and processing of samples according to the laboratory's internal protocols.
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	• Duplicate samples were collected from the second chute on the cyclone splitter at a 1 in 20 sample frequency.
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	 Sample sizes were appropriate for the material being sampled.
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered 	 Pulps were retrieved from storage (Challenger Geological Services) and re- submitted to Genalysis Intertek Laboratories, Adelaide.
•	 partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples from the 2020 RC programme were analysed by ALS, Adelaide, using AU-GA22 50 g charge. Muti-elements (48) for all samples we analysed using ME- MS61, a 4-acid digest method with an ICP- MS finish.
		 Gold quantity was analysed using 50 g fire assay techniques (FA50/OE04) that utilise a 50 g lead collection fire assay with ICP- OES finish to deliver reportable precision to 0.005 ppm.
		 Multi-element geochemistry was digested by four acid ICP-MS and analysed for Ag, As, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Li, Mg, Mn, Mo, Ni, Pb, Pd, Pt, Sb, Se, S, Sn, Sr, Te, U, V, W, Y and Zn.

		 Saprolite zones were identified by logging and chip tray review. Pulp samples were identified from the 2020 drilling to analyse for additional lanthanide elements by 4-acid ICP-MS and analysed for Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. Field blanks and standards were previously submitted at a frequency of 1 in 20 samples. Field duplicate samples were submitted at a frequency of 1 in 20 samples. Reported assays are to acceptable levels of accuracy and precision.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Sampling data was recorded in field books, checked upon digitising, and transferred to database. Compositing of assays was undertaken and reviewed by Cobra staff. Original copies of lab assay data are retained digitally on the Cobra server for future reference. Physical copies of field sampling books and field geological logs are retained by Cobra for future reference. Historic significant intercepts have been calculated from the database using a 0.5 g/t cut-off. Significant intercepts have been prepared by Mr Rupert Verco and reviewed by Mr Robert Blythman.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Collar locations were surveyed using Leica CS20 GNSS base and rover with 0.05cm instrument precision. Downhole surveying was undertaken by Hagstrom using a gyro. Collar locations from Hagstrom were surveyed using a DGPS in GDA2020 which were then converted to MGA94 Zone 53. Downhole survey azimuths have been converted from true north to geodetic datum GDA 94 zone 53.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral 	 Holes were drilled on a spacing of approximately 50m east / west and between 50m to 300m north / south.

	 Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Hole dips vary between 60 and 80 degrees. No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of drilling was designed to best test discrete targets. Gold results are not presented as true width but are not considered to present any down-dip bias. Rare Earth intercepts have been presented as both downhole and true width intercepts. The nature of mineralisation reflects the weathering profile of the saprolite and is therefore horizontal in nature. Reported true widths are calculated as vertical.
Sample security	The measures taken to ensure sample security.	 Transportation of samples to Adelaide was undertaken by a competent independent contractor. Samples were packaged in zip tied polyweave bags in bundles of five samples and transported in larger bulka bags by batch while being transported. Pulps have been stored at a secure facility between the initial analysis and the time of re-assay.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Pulps were transported from storage to the Laboratory by Cobra Resources staff. No audit or review has been undertaken. Genalysis Intertek Laboratories Adelaide are a National Association of Testing Authorities ("NATA") accredited laboratory, recognition of their analytical competence.

Appendix 2: Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	re location and ownership including agreements or material issues with third parties such as joint ventures, partnerships,	 This drilling programme has been carried out on EL 5953 and EL 6131, currently owned 100% by Peninsula Resources limited, a wholly owned subsidiary of Andromeda Metals Limited.
	overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 Newcrest Mining Limited retains a 1.5% NSR royalty over future mineral production from both licences.
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	• Baggy Green, Clarke, Laker and the IOCG targets are located within Pinkawillinie Conservation Park. Native Title Agreement has been negotiated with the NT Claimant and has been registered with the SA Government.
		 Aboriginal heritage surveys have been completed over the Baggy Green project area, with no sites located in the immediate vicinity.
		 A Native Title Agreement is in place with the relevant Native Title party.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 On-ground exploration completed prior to Andromeda Metals' work was limited to 400m spaced soil geochemistry completed by Newcrest Mining Limited over the Barns prospect.
		 Other than the flying of regional airborne geophysics and coarse spaced ground gravity, there has been no recorded exploration in the vicinity of the Baggy Green deposit prior to Andromeda Metals' work.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The deposits are considered to be either lode gold or intrusion type mineralisation related to the 1590 Ma Hiltaba/GRV tectonothermal event.
		 Gold mineralisation has a spatial association with mafic intrusions/granodiorite alteration and is associated with metasomatic alteration of host rocks.
		• Rare earth minerals occur within the kaolinised saprolite horizon. Preliminary XRD analyses performed by the CSIRO supports IAC mineralisation. Florencite and monazite were also detected. Further work is planned to define mineralogy and nature of mineral occurrence.
	 A summary of all information material to the understanding of 	 The report includes a tabulation of drillhole collar information and associated interval

	the exploration results including a tabulation of the following information for all material drill holes:	grades to allow an understanding of the results reported herein.				
	 easting and northing of the drill hole collar 					
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 					
	$\circ~$ dip and azimuth of the hole					
	 down hole length and interception depth 					
	 o hole length. 					
	• If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.					
Data aggregation	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually material and should be stated. 	Reported summary intercepts are weighted averages based on length				
methods		 averages based on length. Rare earth intercepts have been presented as both downhole and true width intercepts The nature of mineralisation reflects the weathering profile of the saprolite and is therefore horizontal in nature. 				
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the	 Rare earth results are reported with a 350 ppm TREO cut-over grade and a maximu internal dilution of 5m. 				
	procedure used for such aggregation should be stated and some typical examples of	 Assayed intervals through reported intercepts are tabulated in the body of this report. 				
	such aggregations should be shown in detail.	 No metal equivalent values have been calculated. 				
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 REE analysis was originally reported in elemental form and has been converted to relevant oxide concentrations in line with industry standards. Conversion factors tabulated below: 				
		Element Oxide Factor				
		Cerium CeO2 1.2284				
		Dysprosium Dy2O3 1.1477				
		Erbium Er2O3 1.1435				
		Europium Eu2O3 1.1579				
		Gadolinium Gd2O3 1.1526				
		Holmium Ho2O3 1.1455				

			Lanthanum	La2O3	1.1728
			Lutetium	Lu2O3	1.1371
			Neodymium	Nd2O3	1.1664
			Praseodymium	Pr2O3	1.1703
			Scandium	Sc2O3	1.5338
			Samarium	Sm2O3	1.1596
			Terbium	Tb2O3	1.151
			Thulium	Tm2O3	1.1421
			Yttrium	Y2O3	1.2699
			Ytterbium	Yb2O3	1.1387
		٠	The reporting of RE		
			accordance with in following calculatio		lards with the
			 TREO = La2O3 Nd2O3 + Sm20 Tb4O7 + Dy2O2 Tm2O3 + Yb2O3 	O3 + Eu2O3 03 + Ho2O3	3 + Gd2O3 + + Er2O3 +
			 CREO = Nd2O Dy2O3 + Y2O3 		+ Tb4O7 +
			 LREO = La2O3 Nd2O3 	3 + CeO2 +	Pr6O11 +
			 HREO = Sm20 Tb4O7 + Dy20 Tm2O3 + Yb20 	3 + Ho2O3	+ Er2O3 +
			 NdPr = Nd2O3 	+ Pr6O11	
			TREO-Ce = TF	REO - CeO2	
			%Nd = Nd2O3		
			 %Pr = Pr6O11/ 		
			 %Dy = Dy2O3/ 		
			 %HREO = HRI 		
			 %LREO = LRE 	O/TREO	
Relationship between mineralisation widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation 	•	Pulp re-analysis ha confirm the occurre mineralisation. Pre unbiased testing of	ence of REE liminary res	ults support
intercept lengths	with respect to the drill hole angle is known, its nature should be reported.	•	Holes drilled have been drilled in se orientations due to the unknown na gold mineralisation, or to test the lo		n nature of he local
	• If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (eg 'downhole length, true width not known').		orientation of gold	mreransall	ווע.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to, a plan view of drill hole	•	Plan and section m demonstrate result		

	collar locations and appropriate sectional views.	
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Referenced plans detail the extent of drilling and the locations of both high and low grades. Comprehensive results are reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Significant intercepts of reported previous intersections are tabulated for reported holes.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Further Pulp re-analysis is planned to test the lateral extent of REE mineralisation over previously drilled areas. Follow-up RAB and RC drilling is planned to test for possible extensions. The complete results from this programme will form the foundation for a maiden resource estimation.

Appendix 3: Drillhole data – 1m samples through reported intersects.

Table 5: Reporting through rare earth intersections

Hole ID	From (m)	To (m)	CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6011	Sm2O3	Tb2O3	Tm2O3	Y2O3	Yb2O3	TREO	TREO- Ce	LREO	HREO	% HREO	%NdPr	%Dy2O3	Th ppm	U ppm
CBRC0003	13	14	157.8	4.5	2.1	1.4	6.2	0.7	60.6	0.3	56.9	16.7	9.6	0.9	0.3	15.7	1.9	336	178	302	34	10.1%	21.9%	1.3%	10.3	1.6
CBRC0003	14	15	269.0	5.6	2.0	2.3	9.7	0.8	108.5	0.2	95.2	27.5	15.7	1.2	0.3	16.8	1.5	556	287	516	40	7.3%	22.1%	1.0%	21.4	1.8
CBRC0003	15	16	233.4	6.4	2.0	2.8	10.4	1.0	109.7	0.2	114.6	33.8	17.9	1.4	0.3	14.9	1.6	550	317	509	41	7.4%	27.0%	1.2%	21.0	2.0
CBRC0003	16	17	230.3	5.6	1.9	2.4	9.3	0.8	117.9	0.2	112.8	34.7	16.2	1.2	0.3	13.1	1.5	548	318	512	36	6.6%	26.9%	1.0%	16.2	1.7
CBRC0003	17	18	172.0	4.2	1.4	1.7	6.5	0.6	74.9	0.1	66.5	18.6	11.0	0.9	0.2	10.9	1.1	371	199	343	28	7.4%	23.0%	1.1%	12.0	3.2
CBRC0003	18	19	185.5	4.5	1.3	2.0	7.1	0.6	87.8	0.1	76.3	22.0	12.6	0.9	0.2	9.5	0.9	411	226	384	27	6.6%	23.9%	1.1%	24.6	2.7
CBRC0003	19	20	92.7	2.7	0.9	1.0	4.1	0.4	23.0	0.1	30.0	7.5	6.5	0.6	0.1	6.6	0.6	177	84	160	17	9.6%	21.3%	1.5%	28.8	2.3
CBRC0003	20	21	164.0	3.9	1.4	1.5	5.9	0.6	61.6	0.1	51.1	14.5	9.6	0.8	0.2	10.3	1.1	327	163	301	26	7.9%	20.1%	1.2%	7.7	1.1
CBRC0003	21	22	194.7	6.1	2.3	2.3	9.2	0.9	36.8	0.2	61.1	14.7	14.2	1.3	0.3	16.8	1.7	363	168	322	41	11.3%	20.9%	1.7%	18.6	2.6
CBRC0003	22	23	225.4	6.9	3.6	2.1	8.5	1.2	72.1	0.5	67.5	18.5	13.0	1.3	0.6	26.5	3.9	452	226	396	55	12.2%	19.0%	1.5%	15.1	3.7
CBRC0003	23	24	253.1	7.4	3.9	2.1	8.6	1.3	76.0	0.6	71.2	19.8	13.0	1.3	0.7	27.8	4.4	491	238	433	58	11.8%	18.5%	1.5%	12.8	2.2
CBRC0003	24	25	320.6	14.8	6.6	4.7	19.3	2.5	65.3	0.8	115.4	27.0	26.7	2.8	0.9	46.1	6.2	660	339	555	105	15.9%	21.6%	2.2%	29.5	3.5
CBRC0003	25	26	336.6	13.3	7.0	3.5	15.3	2.4	79.2	1.0	96.1	24.2	20.0	2.3	1.1	57.1	7.5	666	330	556	110	16.6%	18.1%	2.0%	35.6	4.9
CBRC0003	26	27	541.7	26.5	13.5	9.1	33.7	4.6	173.6	1.8	247.6	64.2	48.6	4.8	2.0	94.2	13.8	1280	738	1076	204	15.9%	24.4%	2.1%	30.9	4.4
CBRC0003	27	28	438.5	19.3	12.0	5.4	21.9	3.8	139.0	1.9	159.9	41.7	28.4	3.3	1.9	93.8	13.3	984	545	808	176	17.9%	20.5%	2.0%	19.1	4.6
CBRC0003	28	29	282.5	20.5	13.4	4.9	21.8	4.3	84.2	2.0	117.2	27.5	25.3	3.3	2.1	113.0	14.4	737	454	537	200	27.1%	19.6%	2.8%	21.0	4.2
CBRC0003	29	30	270.2	28.8	17.5	7.2	31.4	5.8	75.3	2.5	147.8	32.9	34.7	4.8	2.7	149.2	17.4	828	558	561	267	32.3%	21.8%	3.5%	25.3	2.9
CBRC0003	30	31	127.8	12.4	9.4	2.1	10.9	2.9	53.1	1.5	46.0	11.8	9.8	1.9	1.5	89.4	10.3	391	263	248	142	36.4%	14.8%	3.2%	13.7	3.4
CBRC0003	31	32	193.5	16.5	10.8	3.7	17.2	3.4	70.3	1.7	86.0	21.0	18.1	2.6	1.7	99.4	11.2	557	364	389	168	30.2%	19.2%	3.0%	16.2	5.6
CBRC0004	31	32	192.2	7.2	3.4	2.1	8.7	1.2	87.4	0.4	74.8	21.2	12.9	1.3	0.5	29.6	3.1	446	254	389	57	12.9%	21.5%	1.6%	21.3	9.5
CBRC0004	32	33	201.5	13.0	6.5	2.9	13.1	2.3	85.1	0.8	84.8	22.7	15.7	2.2	0.9	53.7	5.9	511	309	410	101	19.8%	21.0%	2.5%	16.2	11.0
CBRC0004	33	34	337.8	20.4	9.3	6.2	26.0	3.4	129.0	1.1	164.7	39.8	33.2	3.7	1.3	79.4	8.0	863	526	705	159	18.4%	23.7%	2.4%	12.0	5.7
CBRC0004	34	35	245.7	18.3	8.9	4.8	22.4	3.3	101.6	1.1	127.0	30.5	25.9	3.3	1.2	83.2	7.7	685	439	531	154	22.5%	23.0%	2.7%	20.4	8.1
CBRC0004	35	36	154.8	16.8	10.1	3.3	18.0	3.4	64.4	1.4	76.4	18.9	16.8	2.8	1.5	102.2	9.4	500	345	331	169	33.8%	19.0%	3.4%	18.8	1.0
CBRC0004	36	37	146.8	7.2	3.7	1.8	9.0	1.3	65.2	0.5	59.7	16.5	11.2	1.3	0.5	37.5	3.3	365	219	299	66	18.1%	20.8%	2.0%	28.2	1.2
CBRC0004	37	38	163.4	6.5	3.5	1.9	8.4	1.2	71.4	0.4	62.7	17.2	11.2	1.2	0.5	34.5	3.2	387	224	326	61	15.8%	20.6%	1.7%	14.5	0.9

Hole ID	From (m)	To (m)	CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6011	Sm2O3	Tb2O3	Tm2O3	Y2O3	Yb2O3	TREO	TREO- Ce	LREO	HREO	% HREO	%NdPr	%Dy2O3	Th ppm	U ppm
CBRC0004	38	39	203.9	9.9	5.2	2.9	12.8	1.9	90.4	0.7	91.6	24.3	16.7	1.8	0.7	50.5	4.7	518	314	427	91	17.6%	22.4%	1.9%	12.3	0.9
CBRC0004	39	40	141.9	7.1	4.6	1.6	7.7	1.5	67.4	0.7	57.6	15.7	9.7	1.2	0.7	48.0	4.6	370	228	292	78	21.0%	19.8%	1.9%	14.8	1.3
CBRC0005	18	19	304.6	6.8	2.6	2.4	10.3	1.0	145.4	0.3	109.4	34.0	17.9	1.4	0.3	21.3	2.3	660	355	611	49	7.4%	21.7%	1.0%	21.1	8.5
CBRC0005	19	20	299.7	7.1	2.7	2.4	10.7	1.1	146.6	0.3	106.2	31.8	17.6	1.5	0.4	22.6	2.5	653	354	602	51	7.8%	21.1%	1.1%	19.9	11.3
CBRC0005	20	21	246.9	6.4	2.5	2.1	9.1	1.0	124.9	0.3	84.8	26.2	14.2	1.3	0.4	20.3	2.4	543	296	497	46	8.4%	20.5%	1.2%	19.9	7.6
CBRC0005	21	22	589.6	23.6	9.2	9.1	34.1	3.6	196.4	1.1	284.4	75.5	56.4	4.8	1.3	65.5	8.5	1363	773	1202	161	11.8%	26.4%	1.7%	16.3	6.8
CBRC0005	22	23	539.3	19.2	7.5	6.8	28.4	3.0	171.8	0.8	227.5	59.2	43.6	3.9	1.0	61.2	6.4	1180	640	1041	138	11.7%	24.3%	1.6%	17.4	6.0
CBRC0005	23	24	356.2	13.5	5.9	3.9	18.1	2.2	133.1	0.6	131.7	35.7	25.5	2.6	0.8	50.5	5.0	785	429	682	103	13.1%	21.3%	1.7%	20.4	6.0
CBRC0005	24	25	523.3	27.9	15.1	6.2	32.4	5.3	198.8	1.8	199.3	51.8	39.2	4.9	2.1	147.9	13.7	1270	747	1012	257	20.3%	19.8%	2.2%	23.4	4.6
CBRC0005	25	26	438.5	26.9	12.5	5.9	31.4	4.6	157.7	1.5	193.1	49.9	38.5	4.7	1.7	123.6	10.9	1101	663	878	224	20.3%	22.1%	2.4%	26.7	5.0
CBRC0005	26	27	366.1	21.9	11.1	4.9	26.0	3.9	134.9	1.4	159.4	41.0	32.1	3.9	1.6	110.5	10.0	929	562	733	195	21.0%	21.6%	2.4%	28.0	5.9
CBRC0005	27	28	272.7	13.3	7.1	2.9	15.8	2.5	137.2	0.9	103.6	28.6	19.4	2.4	1.0	66.4	6.3	680	407	562	118	17.4%	19.4%	2.0%	28.9	6.5
CBRC0005	28	29	239.5	15.0	7.9	3.0	17.4	2.8	98.4	1.0	101.4	26.7	19.9	2.6	1.2	76.7	7.5	621	381	486	135	21.7%	20.6%	2.4%	25.8	5.7
CBRC0005	29	30	195.9	9.8	5.0	2.1	12.0	1.8	84.9	0.6	77.0	20.8	14.8	1.7	0.7	46.2	4.6	478	282	393	85	17.7%	20.5%	2.1%	26.8	5.3
CBRC0005	30	31	124.7	15.8	10.2	2.3	14.1	3.3	53.6	1.4	58.8	14.8	12.7	2.4	1.5	109.0	10.0	435	310	265	170	39.1%	16.9%	3.6%	25.1	5.5
CBRC0005	31	32	127.8	8.4	4.1	2.0	10.2	1.5	45.7	0.5	58.3	14.8	12.1	1.5	0.6	43.7	3.7	335	207	259	76	22.7%	21.8%	2.5%	22.8	7.3
CBRC0005	32	33	221.1	13.5	7.2	3.7	16.1	2.6	97.8	1.0	91.4	24.5	18.5	2.3	1.0	78.5	6.8	586	365	453	133	22.6%	19.8%	2.3%	23.9	6.7
CBRC0005	33	34	404.1	10.9	5.0	3.9	15.1	1.9	224.0	0.7	114.8	35.1	19.7	2.0	0.7	50.2	4.7	893	489	798	95	10.7%	16.8%	1.2%	20.0	4.0
CBRC0005	34	35	189.8	10.4	5.5	2.3	11.8	2.0	80.6	0.7	74.6	20.9	14.1	1.8	0.8	51.6	5.1	472	282	380	92	19.5%	20.2%	2.2%	18.1	5.8
CBRC0005	35	36	105.2	9.7	6.0	1.4	8.8	2.0	47.0	0.8	39.1	10.6	8.6	1.5	0.8	59.9	5.3	307	201	210	96	31.3%	16.2%	3.2%	18.4	5.2
CBRC0006	32	33	216.2	5.3	2.1	1.5	6.7	0.8	106.5	0.2	60.4	19.4	9.8	1.0	0.3	21.6	1.7	454	237	412	41	9.1%	17.6%	1.2%	18.8	6.6
CBRC0006	33	34	199.6	5.5	3.3	1.5	7.2	0.9	96.1	0.3	60.1	19.2	10.4	1.0	0.3	22.5	1.9	430	230	385	44	10.3%	18.5%	1.3%	18.7	5.1
CBRC0006	34	35	190.4	5.2	2.1	1.3	7.0	0.9	90.4	0.2	57.6	18.2	10.0	1.0	0.3	21.7	1.8	408	218	367	41	10.2%	18.6%	1.3%	27.9	6.1
CBRC0006	35	36	162.8	4.1	1.9	0.9	5.6	0.7	74.4	0.2	48.2	15.4	7.9	0.8	0.3	17.8	1.6	342	180	309	34	9.9%	18.6%	1.2%	18.1	8.3
CBRC0006	36	37	176.3	5.1	2.3	1.1	6.5	0.8	80.8	0.3	57.2	17.9	9.9	0.9	0.3	21.1	2.2	383	207	342	41	10.6%	19.6%	1.3%	15.2	6.7
CBRC0006	37	38	296.0	5.5	2.4	1.5	7.7	0.9	143.1	0.3	84.9	28.0	12.0	1.1	0.3	24.0	2.2	610	314	564	46	7.5%	18.5%	0.9%	17.3	4.4
CBRC0006	38	39	308.3	7.8	3.2	2.2	10.8	1.2	157.7	0.3	98.8	29.7	15.9	1.5	0.4	31.0	2.4	671	363	610	61	9.1%	19.1%	1.2%	17.6	5.3
CBRC0006	39	40	180.6	4.7	2.6	1.5	6.2	0.8	96.5	0.3	60.3	18.1	8.8	0.9	0.3	21.2	2.1	405	225	364	41	10.1%	19.4%	1.2%	10.7	6.4
CBRC0006	40	41	134.5	4.2	2.3	1.4	5.6	0.8	67.4	0.3	44.6	13.0	7.7	0.8	0.3	21.8	2.0	307	172	267	39	12.9%	18.8%	1.4%	17.6	4.5

Hole ID	From (m)	To (m)	CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6011	Sm2O3	Tb2O3	Tm2O3	Y2O3	Yb2O3	TREO	TREO- Ce	LREO	HREO	% HREO	%NdPr	%Dy2O3	Th ppm	U ppm
CBRC0006	41	42	256.7	6.3	3.0	2.1	9.5	1.1	129.6	0.4	88.8	25.4	14.1	1.2	0.4	30.9	2.7	572	315	515	58	10.1%	20.0%	1.1%	18.0	4.3
CBRC0006	42	43	210.1	4.9	2.2	1.7	8.2	0.8	103.3	0.3	72.3	20.4	12.8	1.0	0.3	23.1	1.8	463	253	419	44	9.6%	20.0%	1.1%	16.6	3.9
CBRC0006	43	44	107.6	4.7	2.3	1.1	5.7	0.8	50.0	0.3	39.9	11.3	7.5	0.8	0.3	24.4	2.1	259	151	216	43	16.5%	19.8%	1.8%	16.8	4.3
CBRC0006	44	45	105.0	6.3	3.2	1.4	7.1	1.2	43.4	0.4	45.4	12.3	9.5	1.1	0.5	33.5	2.9	273	168	216	58	21.1%	21.1%	2.3%	17.8	6.6
CBRC0006	45	46	86.6	6.3	3.4	1.5	6.8	1.2	31.8	0.5	40.6	10.5	8.7	1.1	0.5	34.8	3.4	238	151	178	59	25.0%	21.5%	2.6%	16.6	6.7
CBRC0006	46	47	176.3	14.7	7.9	2.5	16.1	2.8	70.6	0.9	81.3	21.7	17.1	2.5	1.1	85.7	6.5	507	331	367	141	27.7%	20.3%	2.9%	14.5	4.9
CBRC0006	47	48	138.2	10.9	6.2	1.7	11.7	2.2	59.8	0.7	53.6	14.3	11.7	1.8	0.8	74.8	4.9	393	255	278	116	29.4%	17.3%	2.8%	13.8	4.1
CBRC0006	48	49	137.0	18.6	12.4	3.0	16.4	4.2	57.8	1.5	62.6	15.7	13.5	2.8	1.7	137.1	9.9	494	357	287	207	42.0%	15.8%	3.8%	15.7	4.5
CBRC0010	12	13	436.1	3.6	1.2	1.9	6.2	0.5	177.1	0.1	112.6	41.1	13.8	0.7	0.1	8.6	0.9	805	368	781	24	3.0%	19.1%	0.4%	16.7	2.8
CBRC0010	18	19	278.8	12.8	3.6	4.7	18.9	1.8	127.8	0.2	126.5	32.2	24.7	2.5	0.4	23.4	2.0	660	382	590	70	10.6%	24.0%	1.9%	13.8	3.2
CBRC0010	19	20	171.4	5.7	1.9	2.2	8.4	0.8	78.9	0.2	68.5	19.0	12.1	1.2	0.2	13.2	1.2	385	214	350	35	9.1%	22.7%	1.5%	16.0	3.7
CBRC0010	20	21	210.7	6.1	1.9	2.4	8.8	0.9	96.9	0.2	78.7	22.8	14.1	1.2	0.2	13.8	1.5	460	250	423	37	8.1%	22.1%	1.3%	16.8	3.3
CBRC0010	21	22	192.2	8.7	3.0	2.5	11.5	1.4	93.1	0.2	71.8	20.6	13.1	1.6	0.3	23.4	1.8	445	253	391	54	12.2%	20.8%	1.9%	15.9	3.7
CBRC0010	22	23	249.4	9.1	3.0	3.1	12.6	1.4	117.0	0.3	88.0	24.8	16.1	1.8	0.4	25.9	2.0	555	305	495	60	10.7%	20.3%	1.6%	17.5	3.7
CBRC0010	23	24	238.3	7.9	3.0	2.6	10.9	1.3	97.8	0.3	83.2	23.9	14.9	1.5	0.4	24.8	2.1	513	274	458	55	10.7%	20.9%	1.5%	16.9	3.7
CBRC0010	24	25	224.2	10.7	4.8	2.9	12.9	1.9	93.0	0.5	89.4	25.0	16.5	1.9	0.7	42.8	4.0	531	307	448	83	15.6%	21.5%	2.0%	21.0	4.5
CBRC0010	25	26	320.6	25.4	14.5	5.5	26.2	5.1	138.4	1.8	135.9	35.4	27.7	4.2	2.1	138.4	12.6	894	573	658	236	26.4%	19.2%	2.8%	9.0	3.5
CBRC0010	26	27	224.2	22.6	14.4	4.4	22.0	4.8	84.7	1.9	111.0	28.5	24.0	3.5	2.2	134.6	13.2	696	472	472	224	32.1%	20.0%	3.2%	9.6	3.2
CBRC0010	27	28	218.7	15.6	8.7	3.5	17.3	3.1	87.3	1.0	95.8	25.0	19.7	2.6	1.3	84.1	7.4	591	372	446	145	24.5%	20.4%	2.6%	13.7	4.0
CBRC0010	28	29	251.8	16.3	9.6	3.5	17.4	3.3	96.3	1.2	98.8	26.1	19.3	2.7	1.5	98.3	8.7	655	403	492	162	24.8%	19.1%	2.5%	13.9	3.7
CBRC0010	29	30	103.9	9.8	6.7	1.8	8.9	2.2	41.3	0.9	46.1	12.3	9.9	1.5	1.1	63.0	6.5	316	212	213	102	32.4%	18.5%	3.1%	16.5	4.2
CBRC0010	30	31	309.6	20.2	11.7	4.4	21.9	4.2	119.0	1.4	133.4	36.4	26.4	3.5	1.7	115.2	10.2	819	510	625	194	23.7%	20.7%	2.5%	8.8	4.2
CBRC0010	31	32	299.7	20.0	11.1	4.2	21.4	4.0	129.0	1.4	132.7	36.5	25.6	3.3	1.6	113.4	9.7	814	514	623	190	23.4%	20.8%	2.5%	18.2	4.1
CBRC0010	32	33	269.0	16.0	9.0	3.6	17.7	3.2	102.2	1.1	114.5	31.9	22.4	2.7	1.3	91.4	8.0	694	425	540	154	22.2%	21.1%	2.3%	15.2	4.3
CBRC0010	33	34	345.2	20.2	9.3	5.3	25.1	3.6	126.7	1.0	163.6	44.6	32.6	3.7	1.3	83.4	7.4	873	528	713	160	18.4%	23.8%	2.3%	18.3	7.3
CBRC0010	34	35	143.7	9.6	5.9	1.9	9.5	1.9	56.9	0.8	57.0	15.7	11.3	1.5	0.9	59.4	5.6	382	238	285	97	25.5%	19.0%	2.5%	20.4	7.9
CBRC0010	35	36	113.1	11.9	8.3	2.0	10.4	2.7	43.0	1.2	51.0	13.8	10.6	1.7	1.3	78.5	8.1	358	245	232	126	35.3%	18.1%	3.3%	25.2	4.6
CBRC0010	36	37	219.3	12.6	6.4	2.9	14.1	2.3	84.8	0.8	88.4	25.1	17.6	2.2	0.9	62.0	5.4	545	325	435	110	20.1%	20.8%	2.3%	15.0	3.6
CBRC0010	37	38	233.4	11.0	5.3	2.9	13.5	2.0	93.9	0.6	90.4	25.5	17.1	2.0	0.8	52.7	4.3	556	322	460	95	17.1%	20.9%	2.0%	13.7	3.5

Hole ID	From (m)	To (m)	CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6011	Sm2O3	Tb2O3	Tm2O3	Y2O3	Yb2O3	TREO	TREO- Ce	LREO	HREO	% HREO	%NdPr	%Dy2O3	Th ppm	U ppm
CBRC0010	38	39	262.9	12.0	5.7	3.2	15.3	2.2	102.7	0.6	100.7	28.2	19.1	2.2	0.8	59.7	4.7	620	357	514	107	17.2%	20.8%	1.9%	16.2	3.6
CBRC0010	39	40	299.7	13.2	6.3	3.1	16.3	2.4	122.6	0.8	122.3	34.7	22.4	2.4	0.9	56.9	5.3	709	409	602	108	15.2%	22.1%	1.9%	17.9	3.5
CBRC0010	40	41	166.4	7.8	4.0	1.8	9.5	1.5	72.1	0.5	67.1	19.0	12.2	1.4	0.6	37.7	3.2	405	239	337	68	16.8%	21.3%	1.9%	16.6	4.7
CBRC0012	30	31	154.8	10.6	5.7	3.0	5.1	2.0	57.6	0.8	83.6	21.4	17.0	1.8	0.8	50.8	5.4	420	266	334	86	20.4%	25.0%	2.5%	23.0	4.2
CBRC0012	31	32	199.6	11.9	6.4	3.5	5.1	2.2	77.4	0.9	100.2	25.3	19.9	2.1	0.9	57.3	6.1	519	319	422	96	18.6%	24.2%	2.3%	20.7	3.7
CBRC0012	32	33	165.2	13.1	7.6	3.3	5.1	2.5	62.9	1.1	85.8	21.7	17.9	2.2	1.1	65.1	7.4	462	297	354	109	23.5%	23.3%	2.8%	21.8	4.1
CBRC0012	33	34	149.9	10.4	6.2	2.8	5.1	2.1	59.8	0.9	72.3	18.5	14.5	1.8	0.9	58.9	5.9	410	260	315	95	23.2%	22.1%	2.5%	20.6	3.9
CBRC0012	34	35	136.4	12.1	7.8	2.7	5.1	2.5	55.1	1.2	69.5	17.4	14.2	1.9	1.2	69.2	7.9	404	268	293	112	27.6%	21.5%	3.0%	21.5	4.0
CBRC0012	35	36	161.5	11.9	7.0	3.0	5.1	2.3	65.1	0.9	80.2	20.0	16.2	2.1	1.0	65.1	6.6	448	287	343	105	23.5%	22.4%	2.7%	13.6	3.4
CBRC0012	36	37	152.9	10.4	5.6	2.8	5.1	2.0	60.9	0.8	79.2	20.3	15.6	1.8	0.8	47.1	5.5	411	258	329	82	19.9%	24.2%	2.5%	15.8	3.8
CBRC0012	37	38	149.3	10.7	6.4	2.5	5.1	2.1	57.3	0.9	70.9	18.3	13.7	1.8	0.9	59.7	6.2	406	256	309	96	23.7%	22.0%	2.6%	12.9	3.1
CBRC0012	38	39	138.2	9.4	5.3	2.5	5.1	1.8	52.2	0.7	70.0	17.6	13.7	1.7	0.8	50.0	4.9	374	236	292	82	22.0%	23.4%	2.5%	15.2	4.4
CBRC0012	39	40	109.9	8.1	4.4	2.1	5.1	1.5	41.5	0.6	57.1	14.2	11.6	1.4	0.6	40.9	4.1	303	193	234	69	22.7%	23.5%	2.7%	16.2	4.2
CBRC0012	40	41	143.7	9.9	5.0	2.8	5.1	1.8	54.1	0.6	77.1	19.4	15.7	1.8	0.7	45.8	4.5	388	244	310	78	20.1%	24.9%	2.5%	14.8	4.8
CBRC0012	41	42	154.8	10.0	4.8	3.0	5.1	1.8	58.1	0.6	82.1	20.9	16.7	1.8	0.7	42.2	4.1	407	252	332	74	18.2%	25.3%	2.5%	14.8	4.5
CBRC0012	42	43	129.0	10.2	5.5	2.5	5.1	1.8	50.4	0.7	65.7	16.3	13.6	1.7	0.8	50.5	5.1	359	230	275	84	23.4%	22.8%	2.8%	16.4	5.1
CBRC0012	43	44	119.0	10.3	6.1	2.2	5.1	2.0	52.8	0.8	57.7	14.3	11.8	1.7	0.9	55.5	5.6	346	227	256	90	26.1%	20.8%	3.0%	17.5	6.7
CBRC0012	44	45	128.4	12.1	7.4	2.4	5.1	2.4	54.1	1.0	62.0	15.6	12.7	2.0	1.1	71.2	6.8	384	256	273	111	29.0%	20.2%	3.1%	15.1	6.8
CBRC0012	45	46	106.4	12.2	7.7	2.3	5.1	2.5	42.8	1.1	54.2	13.4	11.4	1.9	1.1	75.6	7.1	345	238	228	117	33.8%	19.6%	3.5%	15.6	5.9
CBRC0012	46	47	91.6	11.1	7.4	2.0	5.1	2.4	36.8	1.0	45.5	11.1	9.9	1.7	1.1	74.8	6.8	309	217	195	114	36.8%	18.3%	3.6%	17.2	5.6
CBRC0012	47	48	142.5	27.6	21.7	3.0	5.1	6.6	70.6	3.0	61.5	15.5	13.3	3.6	3.2	238.1	19.9	635	493	303	332	52.2%	12.1%	4.3%	14.6	4.6
CBRC0013	20	21	453.3	10.9	4.7	3.8	5.1	1.8	185.9	0.5	131.4	37.3	22.8	2.1	0.6	36.8	4.0	901	448	831	70	7.8%	18.7%	1.2%	17.8	2.9
CBRC0013	21	22	276.4	8.7	3.9	2.9	5.1	1.5	105.8	0.5	93.0	25.2	16.9	1.7	0.5	32.0	3.3	577	301	517	60	10.4%	20.5%	1.5%	25.2	2.7
CBRC0013	22	23	180.6	6.4	3.1	1.9	5.1	1.1	93.0	0.4	66.4	18.3	11.4	1.2	0.4	24.5	2.9	417	236	370	47	11.3%	20.3%	1.5%	28.3	2.0
CBRC0013	23	24	209.4	14.0	7.0	4.2	5.1	2.5	64.9	0.9	108.7	25.7	23.0	2.6	1.0	62.7	6.4	538	329	432	107	19.8%	25.0%	2.6%	28.5	2.1
CBRC0013	24	25	108.2	10.5	6.8	2.3	5.1	2.2	37.3	1.0	57.6	14.0	11.9	1.7	1.0	64.4	6.7	331	222	229	102	30.8%	21.6%	3.2%	30.1	2.0
CBRC0013	25	26	123.5	11.0	7.7	1.9	5.1	2.4	59.3	1.1	50.9	13.5	10.4	1.7	1.1	78.5	7.3	376	252	258	118	31.4%	17.2%	2.9%	14.5	1.8
CBRC0013	26	27	95.7	6.3	3.7	1.3	5.1	1.3	37.8	0.5	39.9	10.7	8.0	1.0	0.5	38.5	3.4	254	158	192	62	24.3%	20.0%	2.5%	18.8	1.9
CBRC0013	27	28	160.3	14.6	9.4	2.7	5.1	3.1	56.1	1.2	74.6	19.5	15.4	2.3	1.3	99.1	8.1	473	312	326	147	31.1%	19.9%	3.1%	18.9	1.8

Hole ID	From (m)	To (m)	CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6011	Sm2O3	Tb2O3	Tm2O3	Y2O3	Yb2O3	TREO	TREO- Ce	LREO	HREO	% HREO	%NdPr	%Dy2O3	Th ppm	U ppm
CBRC0013	28	29	120.4	9.4	5.5	2.0	5.1	1.9	44.9	0.7	52.9	13.5	11.0	1.6	0.8	55.7	4.9	330	210	243	88	26.5%	20.1%	2.8%	17.6	2.3
CBRC0013	29	30	242.6	18.0	9.0	4.3	5.1	3.3	110.5	1.1	111.1	28.3	22.1	3.2	1.2	83.1	7.8	651	408	515	136	20.9%	21.4%	2.8%	13.6	1.5
CBRC0013	30	31	215.0	18.5	9.3	4.2	5.1	3.3	88.2	1.2	100.6	24.3	21.2	3.2	1.3	88.9	8.8	593	378	449	144	24.3%	21.1%	3.1%	16.2	2.6
CBRC0013	31	32	136.4	16.9	11.5	2.6	5.1	3.7	54.3	1.6	62.5	15.8	13.7	2.6	1.7	114.9	10.7	454	318	283	171	37.7%	17.2%	3.7%	15.5	2.0
CBRC0016	28	29	378.3	22.3	11.3	6.7	5.1	4.1	89.7	1.4	151.5	36.2	35.3	4.0	1.6	95.5	10.2	853	475	691	162	19.0%	22.0%	2.6%	27.0	7.2
CBRC0016	29	30	195.9	19.4	11.1	4.5	5.1	3.7	56.8	1.6	100.8	23.3	22.8	3.2	1.6	94.0	10.8	555	359	400	155	28.0%	22.4%	3.5%	22.1	6.6
CBRC0016	30	31	561.4	52.5	26.4	13.4	5.1	9.6	176.5	3.3	297.0	66.3	68.7	9.3	3.5	240.0	22.9	1556	995	1170	386	24.8%	23.3%	3.4%	30.2	8.6
CBRC0016	31	32	325.5	36.3	24.1	6.9	5.1	7.7	136.6	3.5	150.6	35.3	32.5	5.7	3.5	238.7	23.1	1035	710	681	355	34.3%	18.0%	3.5%	45.6	8.8
CBRC0016	32	33	135.7	11.3	7.6	2.3	5.1	2.4	59.1	1.1	57.1	14.2	11.4	1.8	1.1	74.0	7.1	391	256	278	114	29.1%	18.2%	2.9%	34.0	8.7
CBRC0016	33	34	112.3	10.8	7.2	2.2	5.1	2.3	44.2	1.0	52.2	12.6	11.4	1.8	1.0	70.4	6.5	341	229	233	108	31.8%	19.0%	3.2%	31.8	11.6
CBRC0016	34	35	103.4	23.1	18.6	2.7	5.1	5.7	40.6	2.8	52.2	12.0	12.5	3.2	2.7	213.3	16.9	515	411	221	294	57.1%	12.5%	4.5%	28.5	11.5
CBRC0016	35	36	87.1	8.2	5.6	1.6	5.1	1.9	37.4	0.9	40.6	10.4	8.1	1.4	0.9	58.5	5.0	273	186	184	89	32.7%	18.7%	3.0%	32.0	9.3
CBRC0016	36	37	106.4	7.9	4.5	1.8	5.1	1.6	44.7	0.6	47.3	12.2	9.7	1.3	0.6	46.7	3.9	294	188	220	74	25.2%	20.2%	2.7%	24.3	9.9
CBRC0016	37	38	81.3	4.8	2.8	1.3	5.1	1.0	34.8	0.3	33.2	9.0	6.7	0.9	0.4	29.3	2.4	213	132	165	48	22.6%	19.8%	2.3%	18.9	8.7
CBRC0016	38	39	248.1	18.8	9.6	4.6	5.1	3.6	97.1	1.1	125.9	30.1	24.2	3.3	1.2	108.3	7.3	688	440	525	163	23.7%	22.7%	2.7%	38.2	10.9
CBRC0017	30	31	152.9	7.3	3.3	2.4	5.1	1.2	45.7	0.4	69.6	18.1	13.5	1.3	0.5	27.9	2.9	352	199	300	52	14.9%	24.9%	2.1%	25.9	9.8
CBRC0017	31	32	202.1	8.3	3.6	2.8	5.1	1.4	54.9	0.4	85.2	21.8	16.6	1.6	0.5	32.5	3.0	440	238	381	59	13.5%	24.3%	1.9%	24.8	12.0
CBRC0017	32	33	390.6	14.6	5.7	5.0	5.1	2.3	100.9	0.6	167.5	42.3	32.2	2.9	0.8	50.9	4.5	826	435	734	92	11.2%	25.4%	1.8%	20.7	8.6
CBRC0017	33	34	563.8	24.0	9.8	7.8	5.1	3.9	161.8	0.9	258.9	65.1	49.7	4.7	1.3	83.7	7.3	1248	684	1099	149	11.9%	26.0%	1.9%	24.1	12.7
CBRC0017	34	35	500.0	35.5	16.0	8.8	5.1	6.1	147.8	1.6	244.2	56.0	52.2	6.6	2.1	146.0	12.7	1241	741	1000	241	19.4%	24.2%	2.9%	23.2	11.9
CBRC0017	35	36	197.8	22.2	14.3	3.7	5.1	4.7	77.2	1.9	90.6	22.0	19.7	3.4	2.0	143.5	12.9	621	423	407	214	34.4%	18.1%	3.6%	24.3	10.7
CBRC0017	36	37	200.8	15.8	9.5	3.1	5.1	3.2	79.9	1.3	88.9	22.9	17.5	2.5	1.4	93.2	9.0	554	353	410	144	26.0%	20.2%	2.9%	27.8	7.9
CBRC0017	37	38	187.9	18.6	13.8	3.0	5.1	4.3	87.0	2.1	78.6	20.1	15.9	2.7	2.0	137.1	13.9	592	404	390	203	34.2%	16.7%	3.1%	24.2	7.9
CBRC0017	38	39	215.6	13.9	7.2	3.3	5.1	2.6	91.7	1.0	94.4	24.2	18.6	2.5	1.0	66.4	6.6	554	339	445	110	19.8%	21.4%	2.5%	25.6	7.9
CBRC0017	39	40	173.2	10.8	5.7	2.6	12.9	2.0	68.6	0.7	77.3	19.7	14.8	1.8	0.8	52.4	5.2	449	275	354	95	21.2%	21.6%	2.4%	20.2	13.1
CBRC0017	40	41	144.3	9.4	5.0	2.2	10.8	1.7	60.2	0.7	65.2	16.6	12.2	1.5	0.7	42.5	4.7	378	233	298	79	21.0%	21.7%	2.5%	25.4	7.3
CBRC0017	41	42	160.3	9.6	5.3	2.1	10.9	1.7	75.9	0.7	62.1	16.4	11.7	1.5	0.7	47.5	4.7	411	251	326	85	20.6%	19.1%	2.3%	20.8	7.5
CBRC0017	42	43	98.0	12.6	9.5	1.8	10.3	2.9	49.5	1.3	40.6	10.4	7.6	1.7	1.3	103.0	8.3	359	261	206	153	42.5%	14.2%	3.5%	15.4	6.7
CBRC0017	43	44	173.2	14.8	10.8	2.2	13.0	3.3	89.0	1.3	64.6	17.5	11.3	2.1	1.4	128.3	8.4	541	368	356	186	34.3%	15.2%	2.7%	18.5	8.6

Hole ID	From (m)	To (m)	CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6011	Sm2O3	Tb2O3	Tm2O3	Y2O3	Yb2O3	TREO	TREO- Ce	LREO	HREO	% HREO	%NdPr	%Dy2O3	Th ppm	U ppm
CBRC0017	44	45	143.1	9.5	6.5	1.8	9.2	2.0	65.3	0.9	52.0	14.2	9.5	1.4	0.9	76.7	5.3	398	255	284	114	28.7%	16.6%	2.4%	22.3	10.2
CBRC0019	29	30	332.9	12.1	5.1	2.7	13.2	2.1	168.9	0.5	105.0	34.1	17.3	2.1	0.7	56.5	3.9	757	424	658	99	13.1%	18.4%	1.6%	21.7	9.5
CBRC0019	30	31	711.2	20.6	8.4	4.9	21.8	3.5	308.4	0.7	204.8	69.2	30.8	3.6	1.1	86.6	5.9	1482	770	1325	157	10.6%	18.5%	1.4%	26.2	8.3
CBRC0019	31	32	289.9	10.8	5.1	2.9	12.1	2.0	148.9	0.5	113.0	35.6	17.1	1.9	0.7	41.5	4.2	686	396	605	82	11.9%	21.7%	1.6%	20.2	10.0
CBRC0019	32	33	202.1	6.3	3.0	1.3	7.5	1.1	110.1	0.3	62.0	19.9	10.3	1.1	0.4	27.9	2.4	456	254	404	51	11.3%	18.0%	1.4%	21.6	6.6
CBRC0019	33	34	189.2	6.6	3.0	1.3	8.3	1.1	92.8	0.3	64.9	20.1	11.4	1.2	0.4	28.7	2.4	432	243	378	53	12.4%	19.7%	1.5%	23.7	5.6
CBRC0019	34	35	180.0	6.9	2.9	1.4	8.0	1.2	89.3	0.3	62.2	19.0	11.0	1.2	0.4	29.0	2.4	415	235	361	54	12.9%	19.6%	1.7%	22.3	6.0
CBRC0019	35	36	205.8	8.0	3.7	1.5	9.2	1.4	97.2	0.4	71.2	21.9	12.8	1.4	0.5	35.2	2.9	473	267	409	64	13.6%	19.7%	1.7%	26.9	6.8
CBRC0019	36	37	142.5	6.3	2.8	1.2	6.6	1.1	69.9	0.3	49.7	15.5	8.9	1.0	0.4	25.5	2.4	334	192	286	48	14.3%	19.5%	1.9%	19.5	9.7
CBRC0019	37	38	213.7	8.0	3.6	1.6	9.0	1.4	103.4	0.3	71.5	22.4	12.5	1.4	0.5	35.3	2.8	488	274	424	64	13.1%	19.3%	1.6%	24.5	8.0
CBRC0019	38	39	186.7	6.7	2.8	1.4	7.9	1.1	86.3	0.3	63.5	19.1	11.6	1.2	0.4	28.7	2.3	420	233	367	53	12.6%	19.7%	1.6%	24.8	5.6
CBRC0019	39	40	173.2	6.5	2.8	1.4	7.4	1.1	83.3	0.3	59.5	18.2	10.5	1.2	0.4	28.3	2.4	397	223	345	52	13.1%	19.6%	1.6%	14.4	9.8
CBRC0019	40	41	211.9	9.3	3.7	2.0	10.8	1.6	99.5	0.3	87.8	25.8	15.5	1.7	0.5	35.9	2.8	509	297	440	69	13.5%	22.3%	1.8%	12.3	10.4
CBRC0019	41	42	249.4	8.3	3.2	1.9	10.0	1.4	124.9	0.3	85.8	26.2	14.8	1.6	0.4	35.0	2.4	566	316	501	65	11.4%	19.8%	1.5%	14.5	12.1
CBRC0019	42	43	248.1	8.7	3.4	1.9	10.2	1.4	123.1	0.3	83.4	25.5	14.9	1.6	0.5	35.8	2.7	562	314	495	67	11.8%	19.4%	1.5%	18.7	3.9
CBRC0019	43	44	234.0	7.6	3.2	1.7	9.2	1.2	119.0	0.3	74.9	23.0	13.1	1.4	0.4	32.9	2.5	524	290	464	60	11.5%	18.7%	1.5%	20.0	4.7
CBRC0020	35	36	344.0	4.2	1.9	1.5	5.9	0.7	161.3	0.3	78.1	27.1	12.6	0.8	0.3	18.3	1.9	659	315	623	36	5.4%	16.0%	0.6%	27.7	11.3
CBRC0020	36	37	558.9	7.6	3.5	2.9	10.4	1.5	204.1	0.5	139.7	45.8	23.9	1.5	0.5	30.2	3.4	1034	475	972	62	6.0%	17.9%	0.7%	36.2	7.6
CBRC0020	37	38	425.0	5.4	2.2	2.7	9.8	0.9	121.4	0.3	122.8	36.4	21.7	1.2	0.3	19.9	2.1	772	347	727	45	5.8%	20.6%	0.7%	31.6	12.2
CBRC0020	38	39	432.4	8.1	3.1	3.5	13.5	1.3	159.5	0.4	146.9	42.5	26.6	1.7	0.4	27.8	2.9	871	438	808	63	7.2%	21.8%	0.9%	34.6	14.8
CBRC0020	39	40	487.7	12.0	4.4	4.9	19.1	1.9	130.2	0.5	180.6	48.1	35.6	2.5	0.7	40.3	3.9	972	485	882	90	9.3%	23.5%	1.2%	32.0	14.7
CBRC0020	40	41	407.8	10.5	4.1	4.1	16.5	1.6	119.6	0.5	161.2	44.6	30.4	2.2	0.6	33.5	3.5	841	433	764	77	9.2%	24.5%	1.2%	27.2	13.3
CBRC0020	41	42	492.6	9.8	3.6	4.3	16.6	1.5	147.2	0.4	172.8	47.4	32.2	2.1	0.5	32.1	3.1	966	474	892	74	7.7%	22.8%	1.0%	20.9	9.6
CBRC0020	42	43	495.0	11.8	4.3	4.8	18.7	1.8	174.7	0.5	188.1	51.2	35.6	2.4	0.6	37.1	3.8	1030	535	945	86	8.3%	23.2%	1.1%	21.6	9.0
CBRC0020	43	44	379.6	6.1	2.7	2.4	9.3	1.0	138.4	0.4	112.6	34.8	19.5	1.2	0.4	22.6	2.7	734	354	685	49	6.7%	20.1%	0.8%	21.9	8.2
CBRC0020	44	45	447.1	14.0	5.5	4.9	21.4	2.2	138.4	0.7	165.1	42.3	32.4	2.9	0.8	50.0	4.9	933	486	825	107	11.5%	22.2%	1.5%	19.6	9.9
CBRC0020	45	46	113.7	6.8	4.5	1.3	6.1	1.5	56.1	0.7	40.4	11.2	8.0	1.0	0.7	37.3	5.0	294	181	229	65	22.1%	17.5%	2.3%	23.6	12.6
CBRC0020	46	47	172.0	12.6	7.3	2.5	12.7	2.5	77.6	1.1	65.6	16.7	14.1	2.0	1.2	73.7	7.5	469	297	346	123	26.2%	17.5%	2.7%	21.3	16.1
CBRC0020	47	48	321.8	21.4	11.5	4.7	25.4	4.1	117.2	1.6	119.7	27.8	26.4	3.8	1.8	105.8	11.0	804	482	613	191	23.8%	18.3%	2.7%	24.8	21.2

Hole ID	From (m)	To (m)	CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6011	Sm2O3	Tb2O3	Tm2O3	Y2O3	Yb2O3	TREO	TREO- Ce	LREO	HREO	% HREO	%NdPr	%Dy2O3	Th ppm	U ppm
CBRC0020	48	49	137.6	12.0	7.5	2.2	12.2	2.5	58.4	1.1	52.4	12.8	11.6	1.9	1.2	70.9	7.8	392	255	273	119	30.4%	16.6%	3.1%	20.1	43.0
CBRC0020	49	50	318.2	24.1	13.0	5.1	27.9	4.6	134.3	1.8	122.9	29.5	27.3	4.1	2.0	130.2	12.4	857	539	632	225	26.3%	17.8%	2.8%	26.2	18.0
CBRC0020	50	51	197.8	13.9	8.9	2.4	13.6	2.9	93.8	1.4	68.8	18.4	13.4	2.2	1.4	98.0	9.0	546	348	392	154	28.2%	16.0%	2.5%	16.7	13.1
CBRC0020	51	52	171.4	9.4	6.3	1.8	9.8	2.0	85.0	0.9	57.9	15.9	10.5	1.5	1.0	65.7	6.1	445	274	341	104	23.5%	16.6%	2.1%	15.2	10.2
CBRC0020	52	53	168.3	8.0	5.0	1.7	8.8	1.7	77.6	0.7	53.7	14.9	10.2	1.3	0.8	55.1	4.8	413	244	325	88	21.3%	16.6%	2.0%	13.7	5.6
CBRC0022	20	21	457.0	3.3	1.2	1.3	4.7	0.5	282.6	0.1	99.8	41.4	10.2	0.6	0.1	8.8	1.0	913	456	891	22	2.4%	15.5%	0.4%	26.8	3.6
CBRC0022	21	22	181.2	1.8	0.9	0.5	2.1	0.3	103.3	0.1	36.8	15.5	4.0	0.3	0.1	6.6	0.9	355	173	341	14	3.9%	14.7%	0.5%	26.8	4.1
CBRC0022	22	23	157.8	2.2	1.1	0.6	2.3	0.4	98.3	0.2	38.0	15.4	4.3	0.4	0.1	7.5	1.0	330	172	314	16	4.8%	16.2%	0.7%	32.1	3.6
CBRC0022	23	24	192.2	2.8	1.4	0.8	3.2	0.5	123.1	0.2	49.2	19.5	5.7	0.5	0.2	10.2	1.3	411	219	390	21	5.1%	16.7%	0.7%	35.2	3.0
CBRC0022	24	25	255.5	4.0	1.5	1.5	5.3	0.6	173.6	0.2	79.9	29.0	10.3	0.7	0.2	12.6	1.2	576	321	548	28	4.8%	18.9%	0.7%	22.8	2.5
CBRC0022	25	26	259.2	2.6	1.2	0.9	3.4	0.4	144.8	0.2	63.5	24.6	6.7	0.5	0.2	8.4	1.0	518	258	499	19	3.6%	17.0%	0.5%	18.5	2.5
CBRC0022	26	27	285.0	2.2	0.9	0.8	3.0	0.4	162.4	0.1	63.7	25.5	6.1	0.4	0.1	7.2	0.9	559	274	543	16	2.9%	16.0%	0.4%	27.0	2.2
CBRC0022	27	28	162.8	1.8	0.9	0.6	2.2	0.3	98.0	0.1	36.2	14.1	4.0	0.3	0.1	6.7	0.9	329	166	315	14	4.2%	15.3%	0.5%	22.4	1.6
CBRC0022	28	29	129.0	2.6	1.2	0.9	3.4	0.4	73.2	0.2	39.9	13.6	5.7	0.5	0.2	9.4	1.1	281	152	261	20	7.1%	19.0%	0.9%	30.8	2.9
CBRC0022	29	30	215.6	3.6	1.6	1.3	4.9	0.6	95.9	0.2	57.5	19.4	8.5	0.7	0.2	12.2	1.5	424	208	397	27	6.3%	18.1%	0.9%	28.7	3.4
CBRC0022	30	31	597.0	11.8	3.6	4.8	19.4	1.6	207.6	0.3	201.4	57.3	33.6	2.4	0.4	29.0	2.4	1173	576	1097	76	6.5%	22.1%	1.0%	24.6	3.5
CBRC0022	31	32	409.1	8.9	3.1	3.3	14.0	1.3	158.9	0.3	131.6	38.5	22.4	1.8	0.4	25.1	2.2	821	412	760	60	7.4%	20.7%	1.1%	27.0	3.9
CBRC0022	32	33	431.2	19.1	8.8	5.3	24.7	3.1	173.6	0.9	194.9	52.5	35.4	3.4	1.1	67.6	6.9	1029	597	888	141	13.7%	24.0%	1.9%	26.1	3.9
CBRC0022	33	34	161.5	11.4	6.3	2.5	12.5	2.1	59.7	0.8	72.6	18.1	14.3	1.8	0.9	56.9	5.4	427	265	326	101	23.6%	21.2%	2.7%	20.5	3.2
CBRC0022	34	35	196.5	9.4	4.3	2.7	12.1	1.5	73.9	0.5	84.8	22.2	16.2	1.7	0.6	36.8	3.5	467	270	394	73	15.7%	22.9%	2.0%	26.7	4.7
CBRC0022	35	36	131.4	6.8	3.3	1.6	7.9	1.1	53.0	0.4	53.1	14.5	9.6	1.1	0.5	27.4	2.7	315	183	262	53	16.8%	21.5%	2.2%	30.1	4.2
CBRC0022	36	37	215.0	6.6	2.8	2.0	8.7	1.0	106.6	0.3	75.5	22.3	12.2	1.2	0.3	24.5	2.2	481	266	432	50	10.3%	20.3%	1.4%	22.2	5.0
CBRC0022	37	38	270.2	11.0	5.4	2.7	12.9	1.8	122.0	0.6	99.2	28.2	17.4	1.8	0.7	44.4	4.2	623	352	537	86	13.7%	20.5%	1.8%	22.0	4.4
CBRC0028	12	13	423.8	3.8	1.2	1.8	6.3	0.6	224.0	0.1	101.9	36.4	11.9	0.8	0.2	11.2	1.0	825	401	798	27	3.3%	16.8%	0.5%	5.4	0.9
CBRC0034	26	27	275.2	2.9	1.0	1.3	4.4	0.4	186.5	0.1	61.4	23.0	7.6	0.6	0.1	8.8	0.9	574	299	554	20	3.6%	14.7%	0.5%	46.0	5.4
CBRC0034	27	28	438.5	4.7	1.6	2.1	7.5	0.7	288.5	0.2	96.6	36.0	11.9	0.9	0.2	13.3	1.1	904	465	871	32	3.6%	14.7%	0.5%	22.2	2.9
CBRC0034	28	29	394.3	4.3	1.5	1.9	6.8	0.6	253.3	0.1	95.4	34.5	11.2	0.9	0.2	13.2	1.1	819	425	789	31	3.7%	15.8%	0.5%	12.7	0.9
CBRC0034	29	30	337.8	4.1	1.6	1.7	6.2	0.6	210.5	0.2	82.4	28.2	10.1	0.8	0.2	14.1	1.2	700	362	669	31	4.4%	15.8%	0.6%	9.8	0.8
CBRC0034	30	31	256.7	2.9	1.1	1.3	4.3	0.4	160.7	0.1	57.9	20.2	7.3	0.5	0.1	11.0	1.0	526	269	503	23	4.3%	14.9%	0.5%	9.0	0.7

Hole ID	From (m)	To (m)	CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6011	Sm2O3	Tb2O3	Tm2O3	Y2O3	Yb2O3	TREO	TREO- Ce	LREO	HREO	% HREO	%NdPr	%Dy2O3	Th ppm	U ppm
CBRC0040	12	13	217.4	3.8	1.1	2.0	5.6	0.5	139.6	0.1	81.5	32.0	10.6	0.8	0.1	6.9	0.7	503	285	481	22	4.3%	22.6%	0.8%	11.2	5.4
CBRC0040	13	14	744.4	17.4	4.3	8.3	25.1	2.3	621.6	0.2	307.3	119.7	42.0	3.6	0.4	32.6	2.1	1931	1187	1835	96	5.0%	22.1%	0.9%	18.3	2.3
CBRC0040	34	35	518.4	25.0	10.8	8.5	5.1	4.2	129.0	1.0	238.2	60.6	45.8	4.7	1.4	93.2	8.2	1154	636	992	162	14.0%	25.9%	2.2%	10.4	4.0
CBRC0040	35	36	211.3	11.7	5.8	3.3	5.1	2.1	60.8	0.7	93.2	23.6	18.1	2.0	0.8	56.0	5.1	500	288	407	93	18.5%	23.4%	2.3%	41.2	4.0